Crack Initiation and Growth During Thermal Transients

  • R. P. Skelton
Part of the International Centre for Mechanical Sciences book series (CISM, volume 389)


This chapter follows the course of a crack in a typical component from the initiation and short crack growth stage, through to the deep crack growth stage and on to the possibility of complete penetration across the wall thickness. The causes of such growth are considered, such as thermal shock and other constraints against expansion or contraction and the many ways of simulating propagation behaviour in the laboratory are discussed, where a cyclic event in service is identified with a fatigue cycle performed in the laboratory. Parameters which are used to describe crack growth in the various regions are explained, together with methods of accounting for internal structural damage in the material (‘creep-fatigue interaction’) which is observed to enhance crack growth rates. Many worked examples are given, either to illustrate a technical point or based on service experience. Finally, a complete case study (retrospective analysis) of crack propagation across a component in power plant is undertaken together with a validation of the calculations.


Crack Initiation Crack Growth Rate Crack Depth Plastic Zone Size Creep Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Skelton, R. P.: Introduction to thermal shock, High Temp. Technol., 8 (1990), 7597.Google Scholar
  2. 2.
    Skelton, R. P.: Application of small specimen crack growth data to engineering components at high temperatures: A review, in: Low Cycle Fatigue (Ed. H. Solomon et al.), ASTM STP 942, Philadelphia 1988, 209–235.Google Scholar
  3. 3.
    Skelton, R. P.: Fatigue crack growth, in: Characterisation of High Temperature Materials: Mechanical Testing, Institute of Metals, London 1988, 108–172.Google Scholar
  4. 4.
    Levaillant, C. and A. Pineau: Assessment of high temperature low cycle fatigue life of austenitic stainless steels by using intergranular damage as a correlating parameter, in: Low Cycle Fatigue and Life Prediction (ed. C. Amzallag et al.), ASTM STP 770, Philadelphia 1982, 169–193.Google Scholar
  5. 5.
    Rémy, L. and R. P. Skelton: Damage assessment of components experiencing thermal transients, in: High Temperature Structural Design, ESIS 12 (Ed. L. H. Larsson ), Mechanical Engineering Publications, London 1992, 283–315.Google Scholar
  6. 6.
    ASME Boiler and Pressure Vessel Code, Case N-47 (29), Class I components in elevated temperature service, Section III, Division I, ASME, New York 1991.Google Scholar
  7. 7.
    RCC-MR: Technical Appendix A3, Section 1, Subsection Z, Materials design and construction rules for mechanical components of FBR nuclear test islands, AFCEN, Paris 1985.Google Scholar
  8. 8.
    Ainsworth, R. A. (Ed.): Assessment procedure for the high temperature response of structures, Issue 2, Nuclear Electric Ltd., Barnwood UK 1996.Google Scholar
  9. 9.
    Skelton, R. P.: Developments in creep-fatigue crack initiation and growth procedures in high temperature codes, in: Mechanical Behaviour of Materials at High Temperatures (Ed. C. M. Branco ), Kluwer Academic Publications, Dordrecht 1996, 281–297.CrossRefGoogle Scholar
  10. 10.
    Yoshida, S.(Ed.): Elevated temperature fatigue properties of engineering materials, Trans NRIM, Tokyo 1977, Vol. 19 onwards.Google Scholar
  11. 11.
    Conway, J. B, Stentz, R. H. and J. T. Berling: Fatigue, Tensile and Relaxation Behaviour of Stainless Steels, US Atomic Energy Commission, Ohio 1981.Google Scholar
  12. 12.
    Skelton, R. P. and G. A. Webster: History effects on the cyclic stress-strain response of a polycrystalline and single crystal nickel-base superalloy, Mater. Sci. Eng., A216 (1996), 139–154.CrossRefGoogle Scholar
  13. 13.
    Masuyama, F., Setoguchi, K., Haneda, H. and F. Nanjo: Findings on creep-fatigue damage in pressure parts of long-term service-exposed thermal power plants, Paper No. PVP-MF-84–015, ASME, New York 1985.Google Scholar
  14. 14.
    Miller, D. A. and R. H. Priest: Materials response to thermal-mechanical strain cycling, in: High Temperature Fatigue: Properties and Prediction (Ed. R. P. Skelton ), Elsevier Applied Science, London 1987, 113–175.CrossRefGoogle Scholar
  15. 15.
    Skelton, R. P. and L. Miles: Crack propagation in thick cylinders of 1/2CrMoV steel during thermal shock, High Temp. Technol., 2 (1984), 23–34.Google Scholar
  16. 16.
    Skelton, R. P. and K. Nix: Crack growth behaviour in austenitic and ferritic steels during thermal quenching from 550°C, High Temp. Technol., 5 (1987), 3–12.Google Scholar
  17. 17.
    Biot, M. A.: New methods in heat flow analysis with application to flight structures, J. Aeronaut. Sci., 24 (1967), 857–873.CrossRefGoogle Scholar
  18. 18.
    Manson, S. S.: Thermal Stress and Low Cycle Fatigue, McGraw Hill, New York 1966.Google Scholar
  19. 19.
    Houtman, J. L.: Inelastic strains from thermal shock, Machine Design,March 1974, 190–194.Google Scholar
  20. 20.
    Simpson, I. C., private communication.Google Scholar
  21. 21.
    Rees, C. J.: Thermal fatigue properties of candidate materials for replacement superheater headers, in: Steam Plant for the 1990’s, Paper C386/025, Inst. Mech. Engrs., London 1990, 161–168.Google Scholar
  22. 22.
    Skelton, R. P. and B. J. E. Beckett: Thermal fatigue properties of candidate materials for advanced steam plant, in: Advances in Material Technology for Fossil Power Plants, ASM, Ohio 1987, 359–366.Google Scholar
  23. 23.
    Quentin, G. and W. Perez-Daple: Start-up control changes offer extended life for combustion turbines, Controls and Automation Update, EPRI, Palo Alto 1989, 2–3.Google Scholar
  24. 24.
    Spencer, R. C. and D. P. Timo: Starting and loading of large steam turbines, in: Proc. American Power Conf., Vol. 36, Chicago 1974, 511–521.Google Scholar
  25. 25.
    Boller, C. and T. Seeger: Materials Data for Cyclic Loading, Parts A-E, Elsevier Science Publishers, Amsterdam 1987.Google Scholar
  26. 26.
    Bruhns, O. T. and H. Hübel: Rigorous inelastic analysis methods, in: High Temperature Structural Design, ESIS 12 (Ed. L. H. Larsson ), Mechanical Engineering Publications, London 1992, 181–200.Google Scholar
  27. 27.
    Conle, A., Oxland, T. R., and T. H. Topper: Computer-based prediction of cyclic deformation and fatigue behaviour, in: Low Cycle Fatigue (Ed. H. Solomon et al.), ASTM STP 942, Philadelphia 1988, 1218–1236.Google Scholar
  28. 28.
    Skelton, R. P.: The relation between laboratory specimen and the practical case, in: High Temperature Fatigue: Properties and Prediction, Elsevier Applied Science, London 1987, 301–319.CrossRefGoogle Scholar
  29. 29.
    Ramberg, W. and W. R. Osgood: Description of stress-strain curves by three parameters, Tech. Note No. 902, NACA 1943.Google Scholar
  30. 30.
    Skelton, R. P: Cyclic stress-strain properties during high strain fatigue, in: High Temperature Fatigue: Properties and Prediction, Elsevier Applied Science, London 1987, 27–112.CrossRefGoogle Scholar
  31. 31.
    Rees, C. J. Skelton, R. P. and E. Metcalfe: Materials comparisons between NF616, HCM12A and TB 12M - II: Thermal fatigue properties, in: New Steels for Advanced Plant up to 620°C (Ed. E. Metcalfe), EPRI/National Power plc, Swindon 1995, 135151.Google Scholar
  32. 32.
    Timo, D. P.: Designing turbine components for low-cycle fatigue, in: Thermal Stresses and Thermal Fatigue (Ed. D. J. Littler), Butterworths, London 1971, 453469.Google Scholar
  33. 33.
    Neuber, H.: Theory of stress concentration for shear-strained prismatical bodies with arbitrary non-linear stress-strain law, Trans. ASME, Ser. E,28 (1961), 544–550.Google Scholar
  34. 34.
    Sumner, G. and V. B. Livesey (Eds): Techniques for High Temperature Fatigue Testing, Elsevier Applied Science Publishers, London 1985.Google Scholar
  35. 35.
    Skelton, R. P.: Energy criterion for high temperature low cycle fatigue failure, Mater. Sci. Technol., 7 (1991), 427–439.CrossRefGoogle Scholar
  36. 36.
    Coffin, L. F.: A study of the effects of cyclic thermal stresses on a ductile metal, Trans. ASME Ser. A, 76 (1954), 931–950.Google Scholar
  37. 37.
    Batte, A. D.: Creep-fatigue life predictions, in: Fatigue at High Temperature (Ed. R. P. Skelton ), Applied Science Publishers, London 1983, 365–401.Google Scholar
  38. 38.
    Priest, R. H. and E. G. Ellison: An assessment of life analysis techniques for fatigue-creep situations, Res Mech., 4 (1982), 127–150.Google Scholar
  39. 39.
    Thomas, G. and R. A. T. Dawson: The effect of dwell period and cycle type on high strain fatigue properties of a ICrMoV rotor forging at 500–550°C, in Engineering Aspects of Creep, Vol. 1, Paper C335/80, Inst. Mech. Engrs., London 1980Google Scholar
  40. 40.
    Viswanathan, R.: Damage Mechanisms and Life Assessments of High Temperature Components, ASM International, Ohio 1989.Google Scholar
  41. 41.
    Skelton, R. P., Beech, S. M., Holdsworth, S. R., Neate, G. J., Miller, D. A., and R. H. Priest: Round robin tests on creep-fatigue crack growth in a ferritic steel at 550°C, in: Behaviour of Defects at High Temperatures (Eds R. A. Ainsworth and R. P. Skelton), ESIS 15, Mechanical Engineering Publications, London 1993, 299–325.Google Scholar
  42. 42.
    Ostergren, W. J.: A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature low cycle fatigue, J. Testing Eval., 4 (1976), 327–339.CrossRefGoogle Scholar
  43. 43.
    Ainsworth, R. A.: Defect assessment procedures at high temperature, Proc. SMIRT 10 Conf., Anaheim, Ca., Vol. L (1989), 79–90.Google Scholar
  44. 44.
    Feltham, P.: Stress relaxation in copper and alpha brasses at low temperatures, J. Inst. Metals, 89 (1960), 210–214.Google Scholar
  45. 45.
    Batte, A. D., Murphy, M. C. and M. B. Stringer: High-strain fatigue properties of a 0.5CrMoV turbine casing steel, Metal. Technol., 5 (1978),405–413.Google Scholar
  46. 46.
    Robinson, E. L.:Effect of temperature variation on the long time rupture strength of steels, Trans. ASME, 74 (1952), 777–781.Google Scholar
  47. 47.
    Priest, R. H. and E. G. Ellison: A combined deformation map-ductility exhaustion approach to creep-fatigue analysis, Mater. Sci. Eng., 49, (1981), 7–17.CrossRefGoogle Scholar
  48. 48.
    Palmgren, A.: Die lebensdaur von kugellagern, Z. Vereines Deutscher Ing., 68 (1924), 339–341.Google Scholar
  49. 49.
    Miner, M. A.: Cumulative damage in fatigue, J. Appl. Mech., 12 (1945), A159 - A164.Google Scholar
  50. 50.
    Skelton, R. P.: High strain fatigue testing at elevated temperature: A review, High Temp. Technol., 3 (1985), 179–194.Google Scholar
  51. 51.
    Van Den Avyle, J. A.: Low cycle fatigue of tubular specimens, Scripta Metall., 17 (1983), 737–740.CrossRefGoogle Scholar
  52. 52.
    Pineau, A.: High temperature fatigue behaviour of engineering materials in relation to microstructure, in: Fatigue at High Temperature (Ed. R. P. Skelton ), Applied Science Publishers, London 1983, 305–364.Google Scholar
  53. 53.
    Skelton, R. P.: Growth of short cracks during high strain fatigue and thermal cycling, in: Low Cycle Fatigue and Life Prediction (ed. C. Amzallag et al.), ASTM STP 770, Philadelphia 1982, 337–381.Google Scholar
  54. 54.
    Smith, D. J.: The behaviour of short cracks at elevated temperatures, Mechanical Behaviour of Materials at High Temperatures (Ed. C. M. Branco ), Kluwer Academic Publications, Dordrecht 1996, 195–215.Google Scholar
  55. 55.
    Hales, R. and R. A. Ainsworth: Multiaxial creep-fatigue rules, Nucl. Eng. Design, 153 (1995), 257–264.Google Scholar
  56. 56.
    Kandil, F. A. and B. F. Dyson: Uncertainties in uniaxial low cycle fatigue measurements due to load misalignment, in: Materials Metrology and Standards for Structural Performance (ed. B. F. Dyson et al.), Chapman Hall, London 1995, 134–149.Google Scholar
  57. 57.
    Wareing, J., Tomkins, B. and I. Bretherton: Life prediction in austenitic stainless steel, in: Flow and Fracture at Elevated Temperatures, ASM, Ohio 1985, 251–278.Google Scholar
  58. 58.
    Argo, H. C., DeLong, J. F., Kadoya, Y., Nakamura, M. and K. Ando, Eddystone experience on long-term exposed 316ss steam turbine valve components, ASME Paper 84-JPGC-Pwr-15, New York 1984, 1–11.Google Scholar
  59. 59.
    Kimura, K., Fujiyama, K. and M. Muramatsu, Creep and fatigue life prediction based on the non-destructive assessment of material degradation for steam turbine rotors, in: High Temperature Creep fatigue (Eds R. Ohtani et al.), Elsevier Applied Science, London 1988, 247–270.Google Scholar
  60. 60.
    O’Connor, D. G. and J. M. Corum: Design rule for fatigue of welded joints in elevated-temperature nuclear components, in: Symposium on ASME Codes and Recent Advances in PVP and Valve Technology Including a Survey of Operations Research methods in Engineering, PVP-Vol. 109, ASME, New York 1986, 69–75.Google Scholar
  61. 61.
    F. Engel, private communication.Google Scholar
  62. 62.
    Maiya, P. S.: Considerations of crack initiation and crack propagation in low-cycle fatigue, Scripta Metall., 9 (1975), 1141–1146.CrossRefGoogle Scholar
  63. 63.
    Manson, S. S. and M. H. Hirschberg: Crack initiation and propagation in notched fatigue specimens, in: Proc. 1st Conf on Fracture (Ed. T. Yokobori et al.), Vol. 1, Japanese Society for Strength and Fracture of Materials, Sendai 1966, 479–499.Google Scholar
  64. 64.
    Raynor, D. and R. P. Skelton: The onset of cracking and failure criteria in high strain fatigue, in: Techniques for High Temperature Fatigue Testing (Eds G. Sumner and V. B. Livesey), Elsevier Applied Science Publishers, London 1985, 143–166. 65.Google Scholar
  65. 65.
    Skelton, R. P.: Damage factors during high temperature fatigue crack growth, in: Behaviour of Defects at High Temperatures (Eds R. A. Ainsworth and R. P. Skelton), ESIS 15, Mechanical Engineering Publications, London 1993, 191–218.Google Scholar
  66. 66.
    Skelton, R. P.: Environmental crack growth in a 0.5CrMoV steel during isothermal high strain fatigue and temperature cycling, Mater. Sci. Eng., 35 (1978), 287–298.CrossRefGoogle Scholar
  67. 67.
    Tomkins, B.: Fatigue crack propagation in metals: An analysis, Phil. Mag., 18 (1968), 1041–1066.CrossRefGoogle Scholar
  68. 68.
    Ohtani, R. and T. Kitamura: Creep-fatigue interaction under high temperature conditions, in: Crack Propagation in Metallic Structures (Ed. A. Carpinteri), Vol. 2, Elsevier, Amsterdam 1994, 1347–1383.Google Scholar
  69. 69.
    Miller, K. J.: Materials science perspective of metal fatigue resistance, Mater. Sci. Technol., 9 (1993), 453–462.CrossRefGoogle Scholar
  70. 70.
    Priest, R. H., Miller, D. A., Gladwin, D. H and J. Maguire: The creep-fatigue crack growth behaviour of a 1CrMoV rotor steel, in: Fossil Power Plant Rehabilitation, ASM, Ohio 1989, 31–37.Google Scholar
  71. 71.
    Pinder, L.: Oxide characterisation for service failure investigations, Corr. Sci., 21 (1981), 749–763.CrossRefGoogle Scholar
  72. 72.
    Skelton, R. P. and J. Byrne: Prediction of frequency effect in high temperature fatigue crack growth using damage factors, Mater. at High Temp., 12 (1994), 67–74.Google Scholar
  73. 73.
    Levaillant, C., Grattier, J., Mottot, M. and Pineau: Creep and creep-fatigue intergranular damage in austenitic stainless steels: discussion of the creep-dominated regime, in: Low Cycle Fatigue (ed. H. D. Solomon et al.), ASTM STP 942, Philadelphia 1982, 414–437.Google Scholar
  74. 74.
    Paris, P. C. and F. Erdogan, A critical analysis of fatigue crack propagation laws, J. Basic Eng. (Trans. ASME), 85 (1963), 528–534.CrossRefGoogle Scholar
  75. 75.
    Haigh, J. R. and R. P. Skelton, A strain intensity approach to high temperature fatigue crack growth and failure, Mater. Sci. Eng., 36 (1978), 133–137.CrossRefGoogle Scholar
  76. 76.
    Dowling, N. E.: Crack growth during low cycle fatigue of smooth axial specimens, in: Cyclic Stress-strain and Plastic Deformation Aspects of Crack Growth, ASTM STP 637, Philadelphia 1977, 97–121.Google Scholar
  77. 77.
    Starkey, M. S. and R. P. Skelton: A comparison of the strain intensity and cyclic J approaches to crack growth, Fatigue Eng. Mater. Struct., 5 (1982), 329–341.CrossRefGoogle Scholar
  78. 78.
    Shih, C. F. and J. W. Hutchinson: Fully plastic solutions and large scale yielding estimates for plane stress crack problems, J. Eng. Technol.(Trans. ASME Ser. H), 98 (1976), 289–295.CrossRefGoogle Scholar
  79. 79.
    Athanassiadis, A., Boissenot, J. M., Brevet, P., Francois, D. and A. Raharinaivo: Linear elastic fracture mechanics computations of cracked cylindrical tensioned bodies, Int. J. Fract., 17 (1981), 553–566.CrossRefGoogle Scholar
  80. 80.
    Dowling, N. E.: Geometry effects and the J integral approach to elastic-plastic fatigue crack growth, in: Cracks and Fracture, ASTM STP 601, Philadelphia 1976, 19–32.Google Scholar
  81. 81.
    Skelton, R. P.: Cyclic crack growth and closure effects in low alloy ferritic steels during creep-fatigue at 550°C, High Temp. Technol., 7 (1989), 115–128.Google Scholar
  82. 82.
    Skelton, R. P., Priest, R. H., Miller, D. A. and C. J. Rees: Validation and background of crack opening and closing relation for use in high temperature assessment, Fatigue Fract. Eng. Mater. Struct. to be published.Google Scholar
  83. 83.
    Skelton, R. P. and K. D. Challenger: Fatigue crack growth in 21/4Cr1Mo steel at 525°C II: Prediction of continuous cycling endurances, Mater. Sci. Eng., 65 (1984), 283–288.CrossRefGoogle Scholar
  84. 84.
    Skelton, R. P.: Crack growth and cyclic stress-strain properties of 9Cr 1Mo steel at elevated temperature, in: Fatigue à Haute Température, Societé Française de Metallurgie, Paris 1986, 185–203.Google Scholar
  85. 85.
    Skelton, R. P. and J. I. Bucklow: Cyclic oxidation and crack growth during high strain fatigue of low alloy steel, Metal. Sci., 12 (1978), 64–70.Google Scholar
  86. 86.
    Buchalet, C. B. and W. H. Bamford, Stress intensity factor solutions for continuous surface flaws in reactor pressure vessels, in: Mechanics of Crack Growth,ASTM STP 590, Philadelphia (1976), 385–402.Google Scholar
  87. 87.
    Hasan, S. T. and M. W. Brown: Thermal downshock fatigue testing in AISI 316 stainless steel plate, High Temp. Technol., 2 (1984), 89–97.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • R. P. Skelton
    • 1
  1. 1.Technology and MedicineImperial College of ScienceLondonUK

Personalised recommendations