Skip to main content

Optimum Design of Tubular Structures

  • Conference paper
Book cover Mechanics and Design of Tubular Structures

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 394))

  • 366 Accesses

Abstract

Compression steel circular and square hollow section (CHS and SHS) struts are optimized and compared to double-angle section ones showing the advantage of CHS and SHS struts (Section 6.2.1). It is shown that the optimum geometry of trusses depends on the shape of compression members (Section 6.2.2). Optimum design of tubular members with welded joints loaded in fatigue is treated in Section 6.3. Absorbed energy of CHS and SHS braces cyclically loaded in tension-compression is determined by closed formulae for hysteresis loop area (Section 6.4).

Compression aluminium-alloy CHS and SHS struts are optimized and it is shown that struts optimized considering the initial imperfections are practically safe and insensitive to imperfections (Section 6.5). CHS beams are optimized for bending in elastic and plastic range and stated that, in plastic range, it is more economic to design these beams without local buckling (Section 6.6). Minimum cost design of SHS Vierendeel trusses gives the optimum number of bays (Section 6.7). In the minimum cost design of a plate structure with rectangular hollow section (RHS) stiffeners the constraint on residual welding distortions is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eurocode 3. 1992. Design of steel structures: Part 1. 1 Brussels, CEN European Committee for Standardization.

    Google Scholar 

  2. Wardenier,J., Kurobane,Y. et al. 1991: Design guide for circular hollow section joints under predominantly static loading. Köln, TÜV Rheinland.

    Google Scholar 

  3. Packer,J.A., J. Wardenier et al. 1992. Design guide for rectangular hollow section joints under predominantly static loading. Köln: TÜV Rheinland.

    Google Scholar 

  4. Rondal,J., K-G. Würker et al. 1992. Structural stability of hollow sections. Köln: TÜV Rheinland:

    Google Scholar 

  5. Farkas,J. 1990. Minimum cost design of tubular trusses considering buckling and fatigue constraints. Tubular Structures. Eds. Niemi,E. and P. Mäkeläinen. London-New York: Elsevier. 451–459.

    Google Scholar 

  6. Hasegawa,A.,H. Abo et al. 1985. Optimum cross-sectional shapes of steel compression members with local buckling. Proc. JSCE Structural Engineering/ Earthquake Engineering 2: 121–129.

    Google Scholar 

  7. Almar-Ness,A., P.J.Haagensen et al. 1984. Investigation of the Alexander L. Kielland failure–metallurgical and fracture analysis. J Energy Resources Technology Trans. ASME 106: 24–31.

    Google Scholar 

  8. Recommendations on fatigue of welded components IIW-Doc. XII-1539–95/XV-84595.

    Google Scholar 

  9. Farkas,J. 1991. Fabrication aspects in the optimum design of welded structures. Struct. Optimization 3: 51–58.

    Google Scholar 

  10. Gregor,V. 1989. The effect of surface preparation by TIG remelting on fatigue life. Zvfracské Spravy- Welding News 39: 60–65.

    Google Scholar 

  11. Maeda,Y. and I. Okura 1983. Influence of initial deflection of plate girder webs on fatigue crack initiation. Eng. Struct. 5: 58–66.

    Google Scholar 

  12. 6.12 Farkas,J. 1983. Optimum design of crane runway girders. Publ. Techn. Univ. Heavy Industry Miskolc Series C. 37: 233–246.

    Google Scholar 

  13. Ingraffea,A.R., K.I.Mettam et al 1987. An analytical and experimental investigation into fatigue cracking in welded crane runway girders. Structural Failure, Product Liability and Technical Insurance. Proc. 2nd Internat. Conference University of Vienna 1986. Ed. Rossmanith,H.P. Inderscience Enterprises. pp. 201–223.

    Google Scholar 

  14. Van Wingerde,A.M., J.A. Packer and J. Wardenier 1995. Criteria for the fatigue assessment of hollow structural connections. J. Construct. Steel Research 35: 71–115.

    Article  Google Scholar 

  15. Popov,E.P. and Black,R.G. 1981. Steel struts under severe cyclic loadings. J.Struct.Div.Proc.ASCE, 107, 1857–1881.

    Google Scholar 

  16. Lee,S.andGoel,S.C. 1987. Seismic behaviour of hollow and concrete filled square tubular bracing members. Research report UMCE 87–11. Department of Civil Eng., Univ. of Michigan, Ann Arbor.

    Google Scholar 

  17. Zayas,V.A., Mahin,S.A and Popov,E.P. 1982. Ultimate strength of steel offshore structures. In: Behaviour of offshore structures, Proc. 3rd Int. Conference, Boston, Hemisphere Publ. Co,. Washington, Voi1. 2. 39–58.

    Google Scholar 

  18. Jain,A.K., Goel,S.C. and Hanson,R,D. 1980. Hysteretic cycles of axially loaded steel members. J.Struct.Div.Proc.ASCE 106. 1777–1795.

    Google Scholar 

  19. Liu,Zh. and Goel,S.C. 1988. Cyclic load behavior of concrete-filled tubular braces. J.Struct.Eng.ASCE 114, 1488–1506.

    Google Scholar 

  20. Matsumoto,T., Yamashita,M. et al. 1987 Post-buckling behavior of circular tube brace under cyclic loadings. In: Safety Criteria in Design of Tubular Structures, Proc.Int.Meeting, Tokyo, 1986. Architectural Institute of Japan, 15–25.

    Google Scholar 

  21. Nonaka,T. 1977. Approximation of yield condition for the hysteretic behavior of a bar under repeated axial loading. Intl Solids Struct. 13, 637–643.

    Google Scholar 

  22. Ochi,K.,Yamashita,M. et al. 1990. Local buckling and hysteretic behavior of circular tubular members under axial loads. JStruct.Constr.Engng Alf No. 417. 53–61. (in Japanese).

    Google Scholar 

  23. Papadrakakis,M. and Loukakis,K. 1987 Elastic-plastic hysteretic behavior of struts with imperfections. Eng. Struct.9, 162–170.

    Google Scholar 

  24. Prathuangsit,D., Goel, S.C. and Hanson,R.D. 1978. Axial hysteresis behavior with end restraints. J. Struct.Div.Proc.ASCE, 104, 883–896.

    Google Scholar 

  25. Shibata,M. 1982. Analysis of elastic-plastic behavior of a steel brace subjected to repeated axial force. Int.J. Solids Struct. 18, 217–228.

    Article  MATH  Google Scholar 

  26. Supple,W.J. and Collins,I. 1980. Post-critical behaviour of tubular struts. Eng.Struct. 2, 225–229.

    Article  Google Scholar 

  27. Chen,W.F. and Sugimoto,H. 1987. Analysis of tubular beam-columns and frames under reversed loading. Eng. Struct. 9, 233–242.

    Article  Google Scholar 

  28. Han,D.J. and Chen,W.F. 1983. Buckling and cyclic inelastic analysis of steel tubular beam-columns. Eng. Struct. 5, 119–132.

    Article  Google Scholar 

  29. Shanley,F.R. 1960. Weight-strength analysis of aircraft structures. New York, Dover Publ.

    Google Scholar 

  30. Gerard,G. 1962. Introduction to structural stability theory. New York etc. McGraw-Hill.

    Google Scholar 

  31. Thompson,J.M.T. and Hunt,G.W. 1973. A general theory of elastic stability. London, etc. Wiley.

    MATH  Google Scholar 

  32. Tvergaard,V. 1973. Imperfection-sensitivity of a wide integrally stiffened panel under compression. International Journal of Solids and Structures 9: 177–192.

    Article  MATH  Google Scholar 

  33. Van der Neut,A. 1973. The sensitivity of thin-walled compression members to column axis imperfections. International Journal of Solids and Structures 9: 999–1011.

    Google Scholar 

  34. Thompson,J.M.T. 1972. Optimization as a generator of structural instability. International Journal of Mechanical Sciences 14: 627–629.

    Article  Google Scholar 

  35. Rondal,J. and Maquoi,R. 1981. On the optimal thinness of centrically compressed columns of SHS. Lecture Notes, Technical University of Budapest, Faculty of Civil Eng., Dept. of Mechanics.

    Google Scholar 

  36. Gioncu,V. 1994. General theory of coupled instabilities. Thin-Walled Structures 19: 81–127.

    Article  Google Scholar 

  37. British Standard 8118. Part 1. 1991. Structural use of aluminium.

    Google Scholar 

  38. Farkas,J. 1992: Optimum design of circular hollow section beam-columns. In “Proceedings of the Second International Offshore and Polar Engineering Conference, San Francisco, 1992. ISOPE, Golden, Colorado, USA.”pp. 494–499.

    Google Scholar 

  39. Chen,W.F. and Sohal, I.S. 1988. Cylindrical members in offshore structures. Thin-walled Structures 6, 153–285.

    Article  Google Scholar 

  40. Martin,L.H.andPurkiss,J.A. 1992. Structural design of steelwork to BS 5950. London-Melbourne, Edward Arnold.

    Google Scholar 

  41. Farkas,J.andJârmai,K. 1995. Fabrication cost calculations and minimum cost design of welded structural parts. Welding in the World 35: 400–406.

    Google Scholar 

  42. COSTCOMP, 1990. Programm zur Berechnung der Schweisskosten. Deutscher Verlag für Schweisstechnik, Düsseldorf

    Google Scholar 

  43. Farkas,J. 1991. Fabrication aspects in the optimum design of welded structures. Struct. Optimization 3: 51–58.

    Article  Google Scholar 

  44. Farkas,J. 1974. Structural synthesis of press frames having columns and cross beams of welded box cross-section. Acta Techn.Hung. 79. No. 1–2. 191–201.

    Google Scholar 

  45. Bodt,H.J.M. 1990. The global approach to welding costs. The Netherlands Institute of Welding.

    Google Scholar 

  46. Farkas,J., Jâtmai,K. 1996a. Fabrication cost calculation and optimum design of welded steel silos. Welding in the World 37: No. 5. 225–232.

    Google Scholar 

  47. Farkas,J., Jârmai,K. 1995. Fabrication cost calculations and minimum cost design of welded structural parts. Welding in the World 35: 400–406.

    Google Scholar 

  48. Farkas,J., Jârmai,K. 1996b. Minimum cost design of SHS Vierendeel trusses. Tubular Structures VII. Proc. 7th Int. Symposium on Tubular Structures, Miskolc, 1996. Eds Farkas,J. and Jârmai,K. Balkema, Rotterdam-Brookfield, 463–468.

    Google Scholar 

  49. Jârmai,K., Horikawa,K., Farkas,J. 1997. Economic design of steel bridge decks. 1TWDoc. XV-F-52–97, XV-951–97. San Francisco.

    Google Scholar 

  50. Farkas,J., Jârmai,K. 1997a. Analysis and optimum design of metal structures. Balkema, Rotterdam-Brookfield.

    Google Scholar 

  51. Farkas,J., Jârmai,K. 1997b. Analysis of some methods for reducing beam curvatures due to weld shrinkage. I1W-Doc. XV-944–97, X-1370–97, X/XV-RSDP-11–97. San Francisco.

    Google Scholar 

  52. prEN 1029–2: 1992. Cold formed structural hollow sections of non-alloy and fine grain structural steels. Part 2. European Committee for Standardization, Brussels.

    Google Scholar 

  53. DAST (Deutscher Ausschuss für Stahlbau) Richtlinie 016. 1986. Bemessung und konstruktive Gestaltung von Tragwerken aus dünnwandigen kaltgeformten Bauteilen. Köln.

    Google Scholar 

  54. Okerblom, N.O., Demyantsevich,V.P., Baikova,I.P. 1963. Design of fabrication technology of welded structures. Leningrad, Sudpromgiz (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Farkas, J. (1998). Optimum Design of Tubular Structures. In: Jármai, K., Farkas, J. (eds) Mechanics and Design of Tubular Structures. International Centre for Mechanical Sciences, vol 394. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2514-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2514-4_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83145-8

  • Online ISBN: 978-3-7091-2514-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics