Topology Optimization of Tubular Structures

  • K. Jármai
Part of the International Centre for Mechanical Sciences book series (CISM, volume 394)


Topology optimization is a great part of structural optimization. Structures should be safe and economic. In most cases these two conflicting aspects can be systematically synthesised by optimum design. Economy is achieved by minimizing the cost function and safety is guaranteed by considering the design constraints.


Design Variable Expert System Topology Optimization Multiobjective Optimization Tubular Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 5.1
    Himmelblau D.M: Applied nonlinear programming. McGraw-Hill, New York. 1972.MATHGoogle Scholar
  2. 5.2
    Vanderplaats, G.N.: Numerical optimization techniques for engineering design. New York: McGraw-Hill, 1984.MATHGoogle Scholar
  3. 5.
    Schittkowski,K.,Zillober,C.,Zotemantel,R.: Numerical comparison of nonlinear programming algorithm for structural optimization. Journal of Structural Optimization, 7 (1994)No. 1/2, 1–19.Google Scholar
  4. 5.4
    Rosenbrock, H.H.: An automatic method for finding the greatest or least value of a function. Computer Journal, 3 (1960) 175–184.CrossRefMathSciNetGoogle Scholar
  5. 5.5
    Hooke,R.,Jeeves, T.A.: Direct search solution of numerical and statistical problems. J.Assoc. Comp. Machinery. 8 (1961) 212–229.CrossRefGoogle Scholar
  6. 5.6
    Farkas,J., Jârmai,K.: Analysis and optimum design of metal structures. Balkema Publishers, Rotterdam, Brookfield, 1997, 347 p. ISBN 90 5410 669 7.Google Scholar
  7. 5.
    Walker,R.J.: An enumerative technique for a class of combinatorical problems, in: Proc. of Symposia in Appl. Math. Amer.Math.Soc.Providence, R.I. 10 (1960), 91–94.Google Scholar
  8. 5.8
    Golomb,S.W. and L.D.Baumert: Backtrack programming, J. Assoc. Computing Machinery, 12 (1965), 516–524.CrossRefGoogle Scholar
  9. 5.9
    Lewis,A.D.M.: Backtrack programming in welded girder design, in: Proc. 5th Annual SHARE-ACM-IEEE Design Automation Workshop, Washington, 1968, 28/1–28/9.Google Scholar
  10. 5.10
    Annamalai,N.: Cost optimization of welded plate girders. Dissertation, Purdue Univ. Indianapolis, Ind. 1970.Google Scholar
  11. 5.11
    Jârmai,K.: Optimal design of welded frames by complex programming method. Publ. Techn. Univ. Heavy Ind. Ser.C. Machinery, 37 (1982) 79–95.Google Scholar
  12. 5.12
    Pareto, V.: Cours d’economie politique. Vols. I and II. Lausanne: F. Rouge, 1896.Google Scholar
  13. 5.13
    Von Neumann, J.; Morgenstern, O. (1947): Theory of game and economic behaviour. Princeton: Princeton University PressGoogle Scholar
  14. 5.14
    Zadeh, L. 1963: Optimality and non-scalar-valued performance criteria. IEEE Trans. Auto. Contr. AC-8Google Scholar
  15. 5.15
    Stadler, W. 1984: Multi-criteria optimization in mechanics (a survey). AMR 37, 277286Google Scholar
  16. 5.16
    Stadler, W. (ed.) 1988: Multi-criteria optimization in engineering and in the sciences. New York: Plenum PressCrossRefGoogle Scholar
  17. 5.17
    Cohon, J.L.: Multi-objective programming and planning. New York: Academic Press, 1978.Google Scholar
  18. 5.18
    Osyczka,A.: Multicriterion Optimization in Engineering. Ellis Horwood, Chichester, 1984.Google Scholar
  19. 5.19
    Osyczka,A.: Computer Aided multicriterion optimization system, Krakow: International Software Publishers, 1992.Google Scholar
  20. 5.20
    Eschenauer, H.; Koski, J.; Osyczka, A. (eds.): Multicriterion design optimization: procedures and applications. Berlin Heidelberg, New York: Springer, 1990.CrossRefGoogle Scholar
  21. 5.21
    Jendo, S.: Multiobjective optimization. In: Save, M.; Prager, W. (eds.) Structural optimization, volume II: Mathematical programming, 1990, 311–342. New York: Plenum PressGoogle Scholar
  22. 5.22
    Koski, J.: Bicriterion optimum design method for elastic trusses. Acta Polytechnica Scandynavica, Mech. Engng. Series. 86 (1984)Google Scholar
  23. 5.23
    Jârmai,K.: Single-and multicriteria optimization as a tool of decision support system. Computers in Industry 11 (1989), 249–266.CrossRefGoogle Scholar
  24. 5.24
    Jârmai,K.: Decision support system on IBM PC for design of economic steel structures, applied to crane girders. Thin-walled Structures 10 (1990), 143–159.CrossRefGoogle Scholar
  25. 5.25
    Likhtarnikov, Y.M., Metal Structures. (in Russian) 1968, Stroyizdat, Moscow.Google Scholar
  26. 5.26
    Pahl, G. and Beelich, K.H., Kostenwachstumsgesetze nach Ähnlichkeitsbeziehungen fur Schweissverbindungen. VDI-Bericht,Nr. 457, 1992, pp. 129–141, Düsseldorf.Google Scholar
  27. 5.27
    Ott, H.H. and Hubka, V., Vorausberechnung der Herstellkosten von Schweisskonstruktionen (Fabrication cost calculation of welded structures). Proc. Int. Conference on Engineering Design ICED,1985, Hamburg, pp. 478–487. Heurista, Zürich.Google Scholar
  28. 5.28
    COSTCOMP, Programm zur Berechnung der Schweisskosten. 1990, Deutscher Verlag für Schweisstechnik, DüsseldorfGoogle Scholar
  29. 5.29
    Bodt, H.J.M., The Global Approach to Welding Costs. The Netherlands Institute of Welding, 1990, The Hague.Google Scholar
  30. 5.30
    American Petroleum Institute: API Bulletin on Design of flat plate structures. Bul. 2V, 1987, 1edn.Google Scholar
  31. 5.31
    Eurocode 3, Design of steel structures, Part 1.1, 1992, CEN. European Committee for Standardization, Brussels.Google Scholar
  32. 5.32
    DIN 2448 Nahtlose StahlrohreGoogle Scholar
  33. 5.33
    DIN 2458 Geschweisste StahlrohreGoogle Scholar
  34. 5.34
    Wardenier,J., Kurobane,Y. et al.: Design wide for circular hollow section joints under predominantly static loading. Köln, TUV Rheinland, 1991.Google Scholar
  35. 5.35
    Rondal,J., Würker, K-G., et al.: Structural stability of hollow sections. Köln, TÜV Rheinland. 1992.Google Scholar
  36. 5.36
    Dutta,D. and K-G.Würker: Handbuch Hohlprofile in Stahlkonstruktionen. Köln, TUV Rheinland GmbH, 1988.Google Scholar
  37. 5.37
    Adeli,H. (ed) 1988. Expert systems in construction and structural engineering. London-New York: Chapman and Hall.Google Scholar
  38. 5.38
    Balasubramanyan,K. 1990. A knowledge based expert system for optimum design of bridge trusses. University Microfilms International, Dissertation Information Service, Ann Arbor, Michigan, No. 8812223.Google Scholar
  39. 5.39
    Personal Consultant Easy, Getting Started, Reference Guide 1987, Texas Instruments Incorporated, Austin, Texas.Google Scholar
  40. 5.40
    LEVEL 5 OBJECT 1990, Reference Guide, FOCUS Integrated Data and Knowledge-Based Systems, Information Builders, 1250 Broadway, New York.Google Scholar
  41. 5.41
    Gero,J.S. (ed) 1987. Expert systems in computer-aided design. Amsterdam: Elsevier.Google Scholar
  42. 5.42
    Harmon,P. & B.Sawyer. 1990. Creating expert systems for business and industry. New York: John Wiley and Sons Inc.Google Scholar
  43. 5.43
    Packer,J.A., J. Wardenier et al.. Design guide for rectangular hollow section joints under predominantly static loading. Köln: TÜV Rheinland, 1992.Google Scholar
  44. 5.44
    Farkas,J.and K.Jârmai: Savings in weight by using CHS or SHS instead of angles in compressed struts and trusses, in: Tubular Structures VI. Proceedings of the 6th International Symposium, Melbourne, 1994. Eds. Grundy,P.,Holgate,A.,Wong,B. Balkema, Rotterdam–Brookfield. 417–422.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • K. Jármai
    • 1
  1. 1.University of MiskolcMiskolcHungary

Personalised recommendations