Advertisement

Axially Loaded Pile Numerical Models vs. Experimental Data

  • E. Cabella
  • R. Passalacqua
Part of the International Centre for Mechanical Sciences book series (CISM, volume 397)

Abstract

In the paper the performances of two numerical models are compared through the backanalysis on experimental data. The first numerical model has been implemented by the authors and, under many aspects, can be regarded as a simplified algorithm; the second one is an “open code”, commercially available. The experimental data come from medium size models performed in a laboratory facility.

Keywords

Triaxial Test Pile Group Pile Model Axisymmetric Geometry Pile Installation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BERARDI G. (1961). Sul comportamento del palo di fondazione in terreno incoerente. Atti deirUniversitä di Pisa, n° 85, Pisa, ItalyGoogle Scholar
  2. BERARDI G., DALERCI G., & A. LA MAGNA (1973). Stato di tensione-deformazione, in fase di esercizio, del palo in terreno incoerente. Proc. XIth Conf. of Italian Geotechnical Association (AGI), Theme 1: Deep Foundations — publ. n.r 3, Milan, ItalyGoogle Scholar
  3. BERARDI G., LA MAGNA A., & R. PASSALACQUA (1981). Pile embedded into a nonlinearly elastic medium. Proc. Xth ICSMFE, Session 8, vol. 2, pp. 619–624, Stockholm, SwedenGoogle Scholar
  4. CLOUGH G. W. & J. M. DUNCAN (1971). Finite element analyses of retaining wall behaviour. ASCE Journ. SMF Div., 8583, Dec. pp. 1657–1673Google Scholar
  5. COYLE H. M. & L. C. REESE (1966). Load transfer for axially loaded piles in clay. ASCE Journ. SMF Div., 4702, Mar. pp. 1–26Google Scholar
  6. COYLE H. M. & I. H. SULAIMAN (1967). Skin friction for steel piles in sand. ASCE Journ. SMF Div., 5590, Nov. pp. 261–278Google Scholar
  7. CUNDALL P. A. (1976). Explicit finite difference methods in Geomechanics. Proc . Conference on Numerical Methods in Geomechanics, Blacksburg, Virginia, 1: 132–150Google Scholar
  8. CUNDALL P. A. (1982). Adaptive density-scaling for time-explicit calculations. Proc. 4th Int. Conference on Numerical Methods in Geomechanics, 1: 23–26, Edmonton, CanadaGoogle Scholar
  9. DALERCI G. (1971). Sulla piastra circolare rigida caricata simmetricamente profondamente immersa in un semispazio elastico. Atti dell’Istituto di Scienza delle Costruzioni, Universitä di Genova, Vol. 5, pp. 75–81, Genova, ItalyGoogle Scholar
  10. DALERCI G. & A. DEL GROSSO (1978). Analisi del comportamento non lineare del complesso palo-terreno mediante l’uso di modelli ad elementi finiti. Atti dell’Istituto di Scienza delle Costruzioni, Universitä di Genova, Serie IV, pubbl. 13, Genova, ItalyGoogle Scholar
  11. DUNCAN J. M. & C-Y. CHANG (1970). Non linear analysis of stress and strain in soils. ASCE Journ. of Soil Mechanics, 96 (SM5), pp. 1629–1653Google Scholar
  12. DUNCAN J. M., P. BYRNE, K. S. WONG & P. MABRY (1980). Stregth stress-strain and bulk modulus parameters for finite element analyses of stresses and movements in soil masses. University of California, College of Engineering, Rep. No. UCB/GT/80–01 Berkeley, U.S.A.Google Scholar
  13. JANBU N. (1963). Soil compressibility as determined by oedometer and triaxial tests. European Conf. of Soil Mech. & Foundation Eng.rg, Vol. 1 pp. 19–25, Wiesbaden, DeutschlandGoogle Scholar
  14. KEZDI A. (1957). Bearing capacity of piles and pile groups. Proc. 4th Int. Conf. of Soil Mech. & Foundation Eng.rg, Vol. 2, London, EnglandGoogle Scholar
  15. LADE P. V. (1977). Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int. Journ. Solids and Structures (13) pp. 1019–1035, NovemberGoogle Scholar
  16. LADE P. V. (1988). Model and parameters for the elastic behaviour of soils. Proc. of Numerical Methods in Geomechanics, pp. 359–364, Innsbruck, AustriaGoogle Scholar
  17. MARTI J. & P. A. CUNDALL (1982). Mixed discretization procedure for accurate solution of plasticity problems, Int. Journal Numerical Methods and Analytical Methods in Geomechanics, 6: 129–139CrossRefMATHGoogle Scholar
  18. MINDLIN R. D. (1936). Force at a point in the interior of a semi-infinite solid. Physics, May, Vol. 7, pp. 195–202MATHGoogle Scholar
  19. PASSALACQUA R. (1986). Behaviour of a single pile subjected to lateral loading: experimental versus numerical model. Proc. 3rd Int. Conf. on Computational Methods and Experimental Measurements. Vol. 2, pp. 673–687, Porto Carras, GreeceGoogle Scholar
  20. PASSALACQUA R. (1991). A sand spreader used for the reconstitution of granular soil models, Soils and Foundations, 2: 175–180.CrossRefGoogle Scholar
  21. POTYONDY J. G. (1961). Skin friction between various soils and construction materials. Geotechnique, Vol. XI, pp. 339–353, London, EnglandGoogle Scholar
  22. SEED H. B., J. P. MULILIS & C. K. CHAN (1975). The effect of method of sample preparation on the cyclic stress-strain behaviour of sands. Rep. E. E. R. C. No. 75–18 Coll. of Eng., University of California.Google Scholar
  23. ZIENKIEWICZ O. C. (1977). The finite element method, 3rd Edition, London, McGraw-Hill.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • E. Cabella
    • 1
  • R. Passalacqua
    • 1
  1. 1.University of GenoaGenoaItaly

Personalised recommendations