Advertisement

Stress-Strain Behaviour of Cohesionless Soils Experiments, Theory and Numerical Computations

  • W. Ehlers
  • H. Müllerschön
Part of the International Centre for Mechanical Sciences book series (CISM, volume 397)

Abstract

Cohesionless soils as for example sand show a very complex stress-strain behaviour depending on the stress state and the load history. To capture this material behaviour and, furthermore, to describe cohesionless soils under saturated and unsaturated (empty) conditions, an elasto-plastic model is used and presented in the framework of the Theory of Porous Media (TPM) defined by the elements mixture theory and concept of volume fractions. Within the constitutive equations of the elasto-plastic model, the elastic response is described by a materially non-linear elasticity law. Plastic deformations are considered in the context of a single-surface yield function with isotropic hardening properties. Non-associated flow is realized with an additional plastic potential function. Isotropic behaviour is assumed and the study is restricted to small strains. Parameter identification for the described model is shown for dense Berlin Sand on the basis of triaxial tests. The presented model is implemented into the finite element code PANDAS*, numerical examples will demonstrate the capability of the formulation.

Keywords

Volumetric Strain Triaxial Test Triaxial Compression Triaxial Compression Test Cohesionless Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DE BOER R., W. EHLERS, S. KOWALSKI & J. PLISCHKA (1991). Porous Media — A Survey of Different Approaches. Forschungsberichte aus dem Fachbereich Bauwesen, Heft 54, Universität-GH-Essen.Google Scholar
  2. BOWEN R. M. (1976). Theory of mixtures, in A. C. Eringen (ed.): Continuum Physics, Vol. III. Academic Press, New York: 1–127.Google Scholar
  3. BOWEN R. M. (1980). Incompressible porous media models by use of the theory of mixtures. Int. J. Engng. Sci. 18: 1129–1148.CrossRefMATHGoogle Scholar
  4. DIEBELS S., P. ELLSIEPEN & W. EHLERS (1998). Error-controlled Runge-Kutta Time Integration of a Viscoplastic Hybrid Two-phase Model. Technische Mechanik, submitted 4/1998.Google Scholar
  5. DIEBELS S., P. ELLSIEPEN & W. EHLERS (1998). A two phase-model for viscoplastic geomaterials. Proceedings of the International Symposium on Dynamics of Continua, Bad Honnef 1996, appears in 1998.Google Scholar
  6. EHLERS W. (1993). Constitutive equations for granular materials in geomechanical context. In K. Hutter (ed.): Continuum Mechanics in Environmental Sciences and Geophysics, CISM Courses and Lecture Notes No. 337. Springer-Verlag, Berlin: 313–402.CrossRefGoogle Scholar
  7. EHLERS W. (1995). A single surface yield function for geomaterials. Arch. Appl. Mech. 65: 63–76.CrossRefGoogle Scholar
  8. EHLERS W. & D. MAHNKOPF (1998). Elstoplastizität und Lokalisierung poröser Medien bei finiten Deformationen. ZAMM 98, submitted 5/1998.Google Scholar
  9. LADE P. V. & M. K. KIM (1988). Single Hardening Constitutive Model for Frictional Materials, Part II. Computers and Geotechnics, 6: 13–29.CrossRefGoogle Scholar
  10. LORET B. (1985). On the choice of elastic parameters for sand. Int. J. Num. Anal. Methods Geomech., 9: 285–292.CrossRefGoogle Scholar
  11. TRUESDELL C. & R. A. TOUPIN (1960). The classical field theories. In S. Flügge (ed.): Handbuch der Physik, Band III/I, Springer-Verlag, Berlin: 226–902.Google Scholar
  12. YAMADA Y. & K. ISHIHARA (1979). Anisotropic Deformation Characteristics of Sand under Three Dimensional Stress Conditions. Soils and Foundations, JSSMFE, 19:79–94.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • W. Ehlers
    • 1
  • H. Müllerschön
    • 1
  1. 1.Stuttgart UniversityStuttgartGermany

Personalised recommendations