Advertisement

Thermoporoelastic Analysis of a Deep Circular Tunnel

Effect of Heterogeneity
  • G. Thouvenin
  • A. Giraud
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 397)

Abstract

Semi-analytical solutions are presented for the behavior of a cylindrical cavity excavated in a porous rock mass. Two homogeneous media constitute the rock mass: a ‘skin’ surrounding the cavity and the porous rock mass. The behavior of the rock mass is thermoporoelastic and contrasts of mechanical and hydraulical properties between the two media are taken into account to model approximately degradation and damage due to the opening of the cavity. General solutions are given for an isotropic saturated porous medium with only one space coordinate, the radius of the cavity. Results are presented, using realistic data, to evaluate temperature, pore pressure, effective stress distributions and radial displacement for two materials representative of a clay and a shale.

Keywords

Rock Mass Pore Pressure Bulk Modulus Plastic Clay Instantaneous Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANDRA (1996). Laboratoires souterrains d’études géologiques. Résultats des travaux de reconnaissance géologique. Report DG/RP/96–01.Google Scholar
  2. Booker, J. R & Small J. C. (1987). A method of computing the consolidation behavior of layered soils using direct numerical inversion of Laplace transforms. International Journal for Numerical and Analytical Methods in Geomechanics, 11, 363–380.CrossRefMATHGoogle Scholar
  3. Coussy, O. (1995). Mechanics of porous continua. John Wiley and Sons.MATHGoogle Scholar
  4. Giraud, A., Homand, F. & Rousset, G. (1998). Thermoelastic and thermoplastic response of a double-layer porous space containing a decaying heat source, International Journal for Numerical and Analytical Methods in Geomechanics, 22, 133–149.CrossRefMATHGoogle Scholar
  5. Giraud, A. & Thouvenin, G (1997). Numerical simulation of a multi-layered porous rock mass containing a waste disposal, Int. J. Rock Mech. & Min. Sci, Vol. 34, 3–4.CrossRefGoogle Scholar
  6. Piessens, R. et al (1983). Quadpack:a subroutine package for automatic integration, Springer-Verlag.CrossRefMATHGoogle Scholar
  7. Small, J. C. & Booker, J. R. (1986). The behavior of layered soil or rock containing a decaying heat source. International Journal for Numerical and Analytical Methods in Geomechanics, 10, 501–519.CrossRefMATHGoogle Scholar
  8. Talbot, A. (1979). The accurate numerical inversion of Laplace transforms’, J. Inst. Maths Applics, vol. 23, 97–120.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • G. Thouvenin
    • 1
  • A. Giraud
    • 1
  1. 1.École Nationale Supérieure de GéologieVandœuvre-lès-NancyFrance

Personalised recommendations