Implicit Integration of Non-Standard Plasticity Models

  • O. M. Heeres
  • R. De Borst
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 397)


The observation that cyclic behaviour of granular materials cannot be described appropriately with standard plasticity models has led to the introduction of numerous non-standard plasticity models. Currently, most of these models are still integrated using an explicit formulation, thus potentially leading to inaccuracy and unstable behaviour. In this paper we give a general method for the fully implicit integration of the rate equations resulting from non-standard plasticity theories. The method is illustrated showing the implicit integration of two of such models.


Yield Surface Deviatoric Stress Plasticity Model Kinematic Hardening Deviatoric Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borja, R. (1991). Cam-Clay plasticity, Part II, Implicit integration of constitutive equations based on a nonlinear stress predictor. Comp.Meth.Appl.Mech.Engng., 88: 225–240.CrossRefMATHMathSciNetGoogle Scholar
  2. Dafalias, Y. F. & Herrmann, L. R. (1980). A bounding surface soil plasticity model, In Pande, G. & Zienkiewicz, O., editors, Proc. Int. Symp. Soils ander Cyclic Loading, pages 335–345, Swansea, Balkema, Rotterdam.Google Scholar
  3. Dafalias, Y. F. & Popov, E. P. (1975). A model of nonlinearly hardening materials for complex loading. Acta Mechanica, 21: 173–192.CrossRefMATHGoogle Scholar
  4. Dafalias, Y. F. & Popov, E. P. (1977). Cyclic loading for materials with a vanishing elastic region. Nucl.Eng. Design, 41: 293–302.CrossRefGoogle Scholar
  5. Groen, A. E. (1997). Three-Dimensional Elasto-Plastic Analysis of Soils. Dissertation, Delft University of Technology.Google Scholar
  6. Hashiguchi, K. (1980). Consitutive equations of elastoplastic materials with elastic-plastic transition. J.Appl.Mech., 102: 266–272.CrossRefGoogle Scholar
  7. Hashiguchi, K. (1993). Mechanical requirements and structures of cyclic plasticity models. Int.J.Plast, 9: 721–748.CrossRefMATHGoogle Scholar
  8. Hashiguchi, K. & Chen, Z.-P. (1998). Elastoplastic constitutive equation of soils with the subloading surface and the rotational hardening. Int.J.Num.Anal.Meth.Geom., 22: 197–228.CrossRefMATHGoogle Scholar
  9. Jeremić, B. & Sture, S. (1997). Implicit integration in elastoplastic geotechnics. Mech.Coh.Frict.Mat., 2: 165–183.CrossRefGoogle Scholar
  10. Kolymbas, D., Herle, I., & Wolffersdorff, P. (1995). Hypoplastic constitutive equation with internal variables. Int.J.Num.Anal.Meth.Geom., 19: 415–436.CrossRefMATHGoogle Scholar
  11. Macari, E. J., Weihe, S., & Arduino, P. (1997). Implicit integration of elasto-plastic consitutive models for frictional materials with highly non-linear hardening functions. Mech.Coh.Frict.Mat., 2: 1–29.CrossRefGoogle Scholar
  12. Masing, G. (1926). Eigenspannungen und Verfestigung beim Messing, In Proc.2nd Int.Congr.Appl.Mech, Zürich.Google Scholar
  13. Mróz, Z., Norris, V. A., & Zienkiewicz, O. C. (1981). An isotropic, critical state model for soils subject to cyclic loading. Geotechnique, 31: 451.CrossRefGoogle Scholar
  14. Mróz, Z. & Zienkiewicz, O. C. (1984). Uniform Formulation of Consitutive Equations for Clays and Sands, In Mechanical Engineering Materials, pages 415–449, John Wiley, New York.Google Scholar
  15. Pastor, M., Zienkiewicz, O. C., & Chan, A. C. (1990). Theme/Feature paper: Generalized plasticity and the modelling of soil behavior. Int.J.Num.Anal.Meth.Geom., 14: 151–190.CrossRefMATHGoogle Scholar
  16. Simo, J. C. & Taylor, R. L. (1985). Consistent tangent operators for rate-independent elastoplasticity. Comp.Meth.Appl.Mech.Engng., 48: 101–118.CrossRefMATHGoogle Scholar
  17. Suiker, A. S. J. (1998). Fatigue behaviour of granular materials, part 2: Numeri-cal formulation of the constitutive relations. Technical Report 7–98–119–3, Delft University of Technology.Google Scholar
  18. Wang, W. M. (1997). Stationary and propagative instabilities in metals — a computational point of view. Dissertation, Delft University of Technology.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • O. M. Heeres
    • 1
  • R. De Borst
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations