A Numerical Procedure for the Analysis of Soil Consolidation

  • E. Ausilio
  • E. Conte
  • A. O. Ficchì
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 397)


A numerical procedure is presented to analyse consolidation of soils with compressible solid particles and pore fluid. The governing differential equations are reduced to ordinary differential equations by applying a Fourier transform along with a Laplace transform, and the solution is found in the finite element fashion without great computational efforts. A number of comparisons with existing solutions are shown in order to assess the accuracy of the employed procedure.


Boundary Element Method Numerical Procedure Pore Fluid Excess Pore Pressure Soil Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ARISTODEMO M. (1985). A high-continuity finite element model for two-dimensional elastic problems, Comp. & Struct., 21(5): 987–993.CrossRefMATHGoogle Scholar
  2. BARDEN L. (1965). Consolidation of compacted and unsaturated clays, Geotechnique, 15(3): 267–286.CrossRefGoogle Scholar
  3. BIOT M. A. (1935). Le problem de la consolidation des matieres argileuses sous une charge, Annaies de la Societe Scientifique de Bruxelles, Series B.55: 110–113.Google Scholar
  4. BOOKER J. R. & SMALL J. C. (1982). Finite layer analysis of consolidation, I, Int. J. Numer. Anal. Methods Geomech., 6: 151–171.CrossRefMATHGoogle Scholar
  5. BOOKER J. R. & SMALL J. C. (1987). A method of computing the consolidation behaviour of layered soils using direct numerical inversion of Laplace transforms, Int. J. Numer. Anal. Methods Geomech., 11: 363–380.CrossRefMATHGoogle Scholar
  6. CHENG A. H-D & LIGGETT J. A. (1984). Boundary integral equation method for linear porous elasticity with applications to soil consolidation, Int. J. Numer. Methods Eng., 20: 255–278.CrossRefMATHGoogle Scholar
  7. CHRISTIAN J. T. & BOEHMER J. W. (1970). Plane strain consolidation by finite elements, J. Soil Mech. Found. Div., ASCE, 96(SM4): 1435–1457.Google Scholar
  8. CIVIDINI A. & ZAVELANI ROSSI A. (1983). The consolidation problem treated by a consistent (static) finite element approach, Int. J. Numer. Anal. Methods Geomech., 7: 435–455.CrossRefMATHGoogle Scholar
  9. CONTE E. (1998). Consolidation of anisotropic soil deposits, Soils and Foundations (accepted for publication).Google Scholar
  10. DARGUSH G. F. & BANERJEE P. K. (1989). Development of BEM for transient poroelasticity, Int. J. Numer. Methods Eng., 28: 2423–2449.CrossRefMATHGoogle Scholar
  11. GHABOUSSI J. & WILSON E. L. (1973). Flow of compressible fluid in porous elastic solids, Int. J. Numer. Methods Eng., 5: 419–442.CrossRefMATHGoogle Scholar
  12. GIBSON R. E., SCHIFFMAN R. L. & PU S. L. (1970). Plane strain and axially symmetric consolidation of a clay layer on a smooth impervious base, Q. J. Mech. Appl. Math., 23: 505–520.CrossRefMATHGoogle Scholar
  13. HWANG C., T. MORGENSTERN & MURRAY D. W. (1971). On solutions of plane strain consolidation problems by finite element methods, Canad. Geotech. J., 8: 109–118.CrossRefGoogle Scholar
  14. MANOLIS G. D. & BESKOS D. E. (1988). Boundary element methods in elastodynamics, Unwin Hyman Ldt., London.Google Scholar
  15. MCNAMEE J. & GIBSON R. E. (1960). Displacement functions and linear transforms applied to diffusion through porous elastic media, Q. J. Mech. Appl. Math., 13: 98–111.CrossRefMATHMathSciNetGoogle Scholar
  16. RENDULIC L. (1936) “Porenziffer und porenwasserdruck in tonen”, Der Bauingenieur, 17: 559–564.Google Scholar
  17. SANDHU R. S. & WILSON E. L. (1969). Finite element analysis of seepage in elastic media, J. Eng. Mech. Div., ASCE, 95(EM3): 641–652.Google Scholar
  18. SCHIFFMAN R. L., CHEN A. T-F. & JORDAN J. C. (1969). An analysis of consolidation theories, J. Soil Mech. Found. Div., ASCE, 95(SM1): 285–312.Google Scholar
  19. TERZAGHI K. (1943). Theoretical soil mechanics. John Wiley and Sons, New York.CrossRefGoogle Scholar
  20. VERRUIJT A. (1969). Elastic storage of aquifers, in R. J. M. de Wiest (ed.), Flow Through Porous Media, Academic Press, N.Y., 331–376.Google Scholar
  21. YOKOO Y., YAMAGATA K. & NAGAOKA, P. (1971). Finite element method applied to Biot’s consolidation theory, Soils and Foundations, 11(1): 29–46.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • E. Ausilio
    • 1
  • E. Conte
    • 1
  • A. O. Ficchì
    • 2
  1. 1.University of CalabriaCosenzaItaly
  2. 2.Civil EngineerCatanzaroItaly

Personalised recommendations