Advertisement

Tunnel Modelling in Analogical Soil: Comparison of Experimental and Computational Results Obtained with a Finite Difference Program

  • I. Al Abram
  • D. Dias
  • P. Mathieu
  • R. Kastner
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 397)

Abstract

The aim of this work is to obtain a better simulation of soil movements due to reconstruction of shallow tunnels, dug with pressurised shield tunnelling boring machine, inducing in the soil mass, successive deconfining, reconfining cycles.

The reduced scale experimentation is realised on a two-dimensional model with the analogical Taylor-Schneebeli material consisting of metallic rods of 3 to 5 mm diameter.

The experiments have been analysed with digital image techniques, and the complete displacement and strain fields were obtained within the entire soil mass. The numerical simulation is done with the explicit finite difference program, FLAC V3.30. by ITASCA. Two different constitutive laws for the analogical soil have been tried: a elastic-plastic law (Mohr-Coulomb) and a constitutive law developed by our laboratory using a non-linear, irreversible law before failure (Duncan type) and a Mohr-Coulomb flow rule after failure. These constitutive laws have also been written for a purely 2D material and numerical results and will be compared with classical results obtained with the 3D model using strain plane analysis. The law parameters were determined from biaxial and oedometer tests done with the analogical soil. Experimental and numerical displacement field within the entire mass as well as the settlement of the soil surface are compared.

Keywords

Tunnel Modelling Biaxial Test Maximum Shear Strain Oedometer Test Shallow Tunnel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AL ABRAM I. , MATHIEU Ph., KASTNER R.et al. [1] (1998): Mesures de emplacements par Imagerie Numérique par un modele réduit simulant le creusement de tunnel. Colloque photomecanique 98, 4,15 et 16 April à Marne la Vallée, 1998, 65–72.Google Scholar
  2. AL ABRAM L, MATHIEU Ph., KASTNER R. [2] (1998): Deplacements dans un modele réduit bidimensionnel de creusement de tunnel, comparaison mesures et calculs. Congrès Universitaire de Genie Civil, Les ouvrages dans leur Environnement, Reims: AUGC, 481p.Google Scholar
  3. AL ABRAM I. [3] (1998): Etude sur modèle rèduit bidimensionnel du champ de déplacement induit par le creusement d’un tunnel à faible profondeur; interaction avec les ouvrages existants. PhD Thesis, sustained at URGC-Géotechnique of l’INSA de Lyon.Google Scholar
  4. DUNCAN J.M., SEED R.B., WONG K.S. et al. (1984): FEADAMI a computer program for Finite Element Analysis of Dams. Research report No. SU/GT/84–03. Department of Civil Engineering Stanford University , 14 p.Google Scholar
  5. KASTNER, R. (1982): Excavations profondes en site urbain. PhD Thesis: INSA-Lyon and Claude Bernard-Lyon 1; 203–208.Google Scholar
  6. OLLIER C. (1997): Etude experimentale de l’interaction sol-machine lors du creusement d’un tunnel peu profond par tunnelier à pression de boue, PhD Thesis sustained at URGC-Geotechnique of l’INSA de Lyon.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • I. Al Abram
    • 1
  • D. Dias
    • 1
  • P. Mathieu
    • 1
  • R. Kastner
    • 1
  1. 1.Institut National des Sciences Appliquées de LyonU.R.G.C. GéotechniqueVilleurbanneFrance

Personalised recommendations