A Comparative Study on the Assessment of Mechanical Properties of Porous and Heterogeneous Rocks by Various Averaging Methods

  • N. Tokashiki
  • Ö. Aydan
  • T. Kyoya
  • K. Sugawara
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 397)


There are various approaches available in literature to asses mechanical properties of porous and/or heterogeneous rocks. However, engineers are always confused which one to use for designing structures in rock masses since these approaches do not always provide unique values. In this article, we first review the fundamental concepts of various approaches for modelling porous and/or heterogeneous rocks as equivalent continua. Then, the applications of these approaches to rocks having various types of pores or inclusions are compared and their validity is discussed.


Representative Elementary Volume Rock Matrix Porous Rock Volumetric Fraction Mortar Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AURIAULT, J.L. (1983). Homogenisation: application to porous saturated media. Summer School on Two-Phase Medium Mechanics, Gdansk.Google Scholar
  2. AYDAN, Ö. (1997). Pressure dependency of porosity and permeability of rocks. Bulletin of Rock Mechanics, Ankara, TSRM, 13, 37–52.Google Scholar
  3. AYDAN, Ö., N. TOKASHIKI, T. SEIKI (1996). Micro-structure models for porous rocks to jointed rock mass APCOM’96, 3, 2235–2242.Google Scholar
  4. AYDAN, Ö., T. AKAGI, Y. SHIMIZU, T. KAWAMOTO (1997). Test for mechanical properties of fracture zones, ARMS’97, Seoul.Google Scholar
  5. BAKHVALOV, N. & G. PANASENKO (1984). Homogenization: Averaging processes in periodic media, Kluwer Academic Pub.Google Scholar
  6. BUDIANSKY, B., R.J. O’CONNEL (1976). Elastic moduli of a cracked solid. Int. J. Solids & Structures, 12, 81–97.CrossRefMATHGoogle Scholar
  7. HERSHEY, A.V. (1954). The elasticity of an isotropic aggregate of anisotropic cubic crystals. J. Appl. Mech., 21, 236–240.MATHGoogle Scholar
  8. HILL, R. (1963). Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids, Vol. 11, pp. 357–372.CrossRefMATHGoogle Scholar
  9. JONES, R.M. (1975). Mechanics of composite materials, Hemisphere Pub. Co., New York.Google Scholar
  10. KAWAMOTO, T., T. KYOYA (1993). Some applications of homogenization method in rock mechanics. Seminar on Impacts of Computational Mechanics to Engineering Problems, Sydney.Google Scholar
  11. KRÖNER, E. (1958). Berechnung der elastischen Konstanten des Vielkristalls aus den Kanstanten des Einkristalls. Z. Phys., 151, 402–410.CrossRefGoogle Scholar
  12. LITEWKA, A., A. SAWCZUK (1984). Experimental evaluation of the overall anisotropic material response on continuous damage. Mechanics of Material Behaviour, Studies in Applied Mechanics, Vol. 6, 239–252.CrossRefGoogle Scholar
  13. REUSS, A. (1929). Berechnung der Fliessgrense von Mischkristallen auf Grund der Plastizitätsbedingung für Feinkristalle. Z. Agnew. Math. u. Mech., Vol. 9,49–58.MATHGoogle Scholar
  14. SANCHEZ-PALENCIA, E. (1980). Non-homogenous media and vibration theory. Lecture Note in Physics, No. 127, Springer, Berlin.Google Scholar
  15. TIMUR, A., W.B. HEMPKINS, R.M. WEINBRANDT (1971). Scanning electron miroscope study of pore systems in rocks. J. Geophy. Res. 76, 4932–4948.CrossRefGoogle Scholar
  16. TOKASHIKI, N., T. KYOYA and Ö. AYDAN (1995). A research on modelling porous rocks. Symp. on Num. Methods in the design and development of Agricultural Engineering Machinery, Agricultural Eng. Machinery Soc. of Japan, Okinawa, 65–79.Google Scholar
  17. VOIGT, W. (1910). Lehrbuch der Kristallphysik, Teubner, Berlin.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • N. Tokashiki
    • 1
  • Ö. Aydan
    • 2
  • T. Kyoya
    • 3
  • K. Sugawara
    • 4
  1. 1.Ryukyu UniversityOkinawaJapan
  2. 2.Tokai UniversityShimizuJapan
  3. 3.Tohoku UniversitySendaiJapan
  4. 4.Kumamoto UniversityKumamotoJapan

Personalised recommendations