Phenomenological and Mathematical Modelling of Coupled Instabilities

  • V. Gioncu
Conference paper
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 379)


The lectures present the background to coupled instabilities, as phenomenon, types, classification, etc. The author gives the main aspects of this theory in the light of the well-known catastrophe theory and the companion theories of dissipative and synergetical systems. The principle of domination, determination and perturbation are presented and the symmetry test is used to determine the terms of potential energy. Three types of interaction between the coupled instability parameters are developed. Simple mechanical models are used for explaining or understanding the different types of coupled instabilities : Augusti, Luongo-Pignataro, Thompson-Gaspar, Budiansky-Hutchinson and Hunt-Burgan-Gioncu models, are the archetypes for these types.


Critical Load Catastrophe Theory Geometrical Imperfection Buckling Mode Reticulate Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Augusti, G.: Stabilita di strutture elastiche elementari in presenza di grandi spostamenti. Accad. Sci. Fis. Mat., 4(5) (1964) Napoli, serie 34.Google Scholar
  2. 2.
    Augusti, G.: Buckling and collapse of structural elements in the inelastic range. Ing. Civile, 11 (1964), 3–17.Google Scholar
  3. 3.
    Bâluts, N.: Interactive buckling of laced columns. In „Coupled Instabilities in Metal Structures“, Liège Int. Symp; 1996 (in press).Google Scholar
  4. 4.
    Bleich, F.: Buckling Strength of Metal Structures. MacGraw Hill, New York, USA, 1952.Google Scholar
  5. 5.
    Budiansky, B.: Theory of buckling and postbuckling behaviour of elastic structures. In „Advances in Applied Mecahnics“ (ed. Chian-Shum Yih), Vol. 14, Academic Press, New York, USA, 1974, 1–65.Google Scholar
  6. 6.
    Budiansky, B., Hutchinson, J.W.: Buckling: Progress and challenge. In „Trends in Solid Mechanics“ (ed. J.F. Besseling and A.M.J. Van der Heijden ). Delft University Press, The Nethelands, 1979, 93–116.Google Scholar
  7. 7.
    Byskov, E., Hutchinson, J.W.: Mode interaction in axially stiffened cylindrical shells. AIAA J., 15 (7) (1977), 941–948.CrossRefGoogle Scholar
  8. 8.
    Chajes, A., Winter, G.: Torsional-flexural buckling of thin-walled members. J. Struct. Div. 91, ST4 (1965), 103–133.Google Scholar
  9. 9.
    Chilver, A.H.: Coupled modes in elastic buckling. J. Mech. Phys. Solids, 15 (1967), 15–28.CrossRefMATHGoogle Scholar
  10. 10.
    Chilver, A.H.: The elastic stability of structures. In,Stability“ (ed. H. Leipholz). Study No. 6, University of Waterloo, 1972, 41–61.Google Scholar
  11. 11.
    Croll, J.G.A.: Model of interactive buckling of stiffened plates. J. Eng. Mech. Div., EM 5 (1975) 575–591.Google Scholar
  12. 12.
    Croll, J.G.A., Walker, A.C.: Elements of Structural Stability. McMillan Press Ltd., London, UK, 1972.Google Scholar
  13. 13.
    Esslinger, M., Geier, B.: Post-Buckling Behaviour of Structures. CISM Courses and Lectures, no. 236, Springer Verlag, Berlin, 1975.Google Scholar
  14. 14.
    Gaspar, Z.: Buckling models for higher catastrophes, J. Struct Mech., 5 (4) (1977), 357–368.CrossRefGoogle Scholar
  15. 15.
    Gilmore, R.: Catastrophe Theory for Scientist and Engineers, Willey, 1981.Google Scholar
  16. 16.
    Gioncu, V.: New conceptions, trends and perspectives in the theory of postcritical behaviour of structures. The 3rd Int. Coll „Stability“, Timi§oara, Romania, 1982, 2–17.Google Scholar
  17. 17.
    Gioncu, V.: Stable and unstable components of the critical load. In „Post-Buckling of Elastic Structures“ (ed. J. Szabo), EUR.OMECH 200, Akad. Kiado, Budapest, Hunary, 1986, pp. 93–118.Google Scholar
  18. 18.
    Gioncu, V.: Coupled instabilities in thin-walled members: phenomenon, theory, practice. Report, Building Research Inst., Timiwara, Romania, 1989.Google Scholar
  19. 19.
    Gioncu, V.: Coupled instabilities in bar structures: phenomenon, theory, practice. Int. Coll. „Stability of Metal Structures“, SSRC, New York, USA, 1989, 357–370.Google Scholar
  20. 20.
    Gioncu, V.: Towards a consistent stability theory of elastic structures. The 3rd Nat. Congress on Mechanics (ed. P.S. Theocaris), Vol. 1, Athens, Greece, 1992; 127–134.Google Scholar
  21. 21.
    Gioncu, V.: Consistent simplified theory for elastic coupled instabilities. Thin-Waled Structures, 19 (1994), 147–159.CrossRefGoogle Scholar
  22. 22.
    Gioncu, V.: Elasto-plasti buckling of compression members as a coupled instability. Thin-Walled Structures, 19 (1994), 221–235.CrossRefGoogle Scholar
  23. 23.
    Gioncu, V.: General report. General theory of coupled instabilities. Thin-Walled Structures, 19 (1994), 81–127.CrossRefGoogle Scholar
  24. 24.
    Gioncu, V., Bâlutl, N.: Instability behaviour of single layer reticulated shells. Space Structures, 7 (4) (1992), 243–252.Google Scholar
  25. 25.
    Gioncu, V., Bâlutli N., Porumb, D., Rennon, N.: Instability behaviour of triangulated barrel vaults. In „Analysis, Design and Construction on Braced Barrel Vaults“, ed. Z.S. Makowski, Elsevier, 1985, 159–182.Google Scholar
  26. 26.
    Gioncu, V., Bâlut, N., Moldovan, A., Pacoste, C., Dubinâ, D.: Theoretical and experimental research on the interaction between flexural and flexural-torsional buckling of welded T-section compression members. Int Coll. „Stability of Steel Structures“, Vol. 1, Akad. Kiado, Budapest, Hungary, 1990, 77–86.Google Scholar
  27. 27.
    Gioncu, V., Bâlutt, N., Dubinâ, D., Moldovan, A., Pacoste, C.: Coupled instabilities in mono-symmetrical steel compression members. J. Constr. Steel Research, 21 (1–3) (1992), 71–95.CrossRefGoogle Scholar
  28. 28.
    Gioncu, V., Ivan, M.: Coupled bifurcations in structural instability. 2nd Conf. „Metal Structures“, Vol. 4, Timisoara, Romania, 1979, 33–48 (in Romanian).Google Scholar
  29. 29.
    Gioncu,+V., Ivan, M.: Interaction between flexural buckling and torsional-flexural in thin-walled compression members. In „Collapse: The Buckling of Structures in Theory and Practice“ (ed. J.M.T. Thompson and G.W. Hunt ). Cambridge University Press, Cambridge, UK, 1983, 359–374.Google Scholar
  30. 30.
    Gioncu, V., Ivan, M.: Fundamentals of Structural Stability Analysis. Edit. Facia, Timisoara, Romania, 1983 (in Romanian).Google Scholar
  31. 31.
    Gioncu, V., Ivan, M.: Theory of Critical and Postcritical Behaviour of Elastic Structures. Edit. Academiei, Bucuresti, Romania 1984 (in Romanian).Google Scholar
  32. 32.
    Gioncu, V., Rendi, B.: Application of Catastrophes Theory in Structural Mechanics. Edit. Academiei, Bucuresti, Romania 1986 (in Romanian, in press).Google Scholar
  33. 33.
    Golubitsky, M., Marsden, J., Schaeffer, D.: Bifurcation problems with hidden symmetries. In „Partial Differential Equations and Dynamical Systems“ (ed. W. Fitzgibbon ). Pitman, London, UK, 1984.Google Scholar
  34. 34.
    Grimaldi, A., Pignataro, M.: Postbuckling behaviour of thin-walled open cross-section compression members. J. Struct. Mech., 7 (2) (1979), 143–159.CrossRefGoogle Scholar
  35. 35.
    Haken, H.: Synergetics. An Introduction. Springer Verlag, Berlin, 1978.CrossRefMATHGoogle Scholar
  36. 36.
    Hansen, J.S.: Some two-mode buckling problems and their relation to catastrophe theory. AIAA J., 15 (11) (1977) 311–321.Google Scholar
  37. 37.
    Hui, D., Hansen, J.S.: The parabolic umbilic catastrophe and its application in the theory of elastic stability, Quart. Appl. Math., 39 (2) (1981), 201–220.MATHMathSciNetGoogle Scholar
  38. 38.
    Hunt, G.W.: Symmetries of elastic buckling. Eng. Struct, 4 (13) (1982) 21–28.CrossRefGoogle Scholar
  39. 39.
    Hunt, G.W.: Hidden (a)symmetries of elastic and plastic bifuraction. Appl. Mech. Rev., 39 (1986), 1165–1986.CrossRefGoogle Scholar
  40. 40.
    Hunt, G.W.: Bifurcations of structural components. Proc. Inst. Civ. Engrs, Part 2, 87 (1989), 443–467.CrossRefGoogle Scholar
  41. 41.
    Hunt, G.W., Burgan, B.A.: Hidden asymmetries in the Shanley model. J. Mech. Phys. Solids, 33 (1985), 83–94.CrossRefGoogle Scholar
  42. 42.
    Hunt, G.W., da Silva, L.S., Manzocchi, G.M.E.: Interactive buckling in sandwich structures, Proc. Roy. Soc. Lond., A, 417 (1988) 155–177.CrossRefGoogle Scholar
  43. 43.
    Hunt, G.W., Williams, K.A.J.: On truncation of the structural potential function. Math. Proc. Cambr. Phil. Soc., 95 (1984), 495–510.CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Hunt, G.W., Williams, K.A.J.: Closed-form and asymptotic solutions for an interactive buckling model. J. Mech. Phys. Solids, 32 (1984), 101–118.CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Huseyin, K.: Nonlinear Theory of Elastic Stability, Noordhoff, Leyden, The Netherlands, 1975.Google Scholar
  46. 46.
    Johns, K.C., Chilver, A.H.: Multiple path generation at coincident branching points. Int. J. Mech. Sci. 13 (1971), 899–910.CrossRefMATHGoogle Scholar
  47. 47.
    Koiter, W.T: Buckling and post-buckling behaviour of a cylindrical panel under axial compression. National Luchtvaartlaboratorium, S 476 (1956), 1–33.Google Scholar
  48. 48.
    Koiter, W.T.: Theory of elastic stability and post-buckling behaviour. Delft University, Delft, The Netherlands, Report, 1962.Google Scholar
  49. 49.
    Koiter, W.T.: Elastic stability and post-buckling behaviour. In „Nonlinear Problems“ (ed. R.E. Langer ), Univ. Wisconsin Press, WI, USA, 1963, 257–275.Google Scholar
  50. 50.
    Koiter, W.T., Kuiken, G.D.C.: The interaction between local and overall buckling on the behaviour of built-up columns. Report 447, Delft, The Netherlands, 1971.Google Scholar
  51. 51.
    Lazopoulos, C., Markatis. S.: Singularities of Elastic Systems. Nat. Techn. Univ. Report, Athens, Greece, 1992.Google Scholar
  52. 52.
    Luongo, A., Pignataro, M.: A nonstandard perturbation analysis of the interaction buckling in nearly symmetric systems. Report 7, Univ. di Roma, Rome, Italy, 1988.Google Scholar
  53. 53.
    Luongo, A., Pignataro, M.: Interactive buckling of nearly symmetric systems; A nonstandard perturbation approach. Cony. Naz. di Mecc. Mat. i Strutt., Roma, Italy, 1989, 147–155.Google Scholar
  54. 54.
    Luongo, A., Pignataro, M.: Multiple interaction and localization phenomenon in postbuckling of compressed thin-walled members. AIAA J., 26 (11) (1989) 1395–1402.CrossRefGoogle Scholar
  55. 55.
    Luongo, A., Pignataro, M.: On the perturbation analysis of interactive buckling in nearly symmetric structures. Int. J. Solids Struct., 23 (6) (1992) 721–733.CrossRefGoogle Scholar
  56. 56.
    Maquoi, R., Massonnet, C.: Interaction between local plate buckling and overall buckling in thin-walled compression members. Theories and Experiments. In „Buckling of Structures“ (ed. B. Budiansky ), IUTAM Symp., Springer Verlag, Berlin, 1976, 117–132.Google Scholar
  57. 57.
    Maquoi, R., Rondal, J.: Mise en equation des nouvelles courbes europeens de flambement. Construct. Metall. 1 (1978), 17–30.Google Scholar
  58. 58.
    Menken, C.M., Stallenberg, G.A.J.: Interactive buckling of beams in bending, Proc. 12th Canadian Congr. of Appl. Mechs., 1989.Google Scholar
  59. 59.
    Moldovan, A., Gioncu, V.: Spatial buckling of T-section members under axial compression in steel structures. In „Recent Research Advances and their Applications to Design“ (ed. N. Hajdin ), 1986, 167–176.Google Scholar
  60. 60.
    Nakamura, T., Uetani, K.: The secondary buckling and postsecondary buckling behaviours of rectangular plates. Int. J. Mech. Sci., 5 (1979), 265–286.CrossRefGoogle Scholar
  61. 61.
    Nashie El, M.: The initial post-buckling of an extensional ring under external pressure. Int. J. Mech. Sci, 17 (1975), 387–388.CrossRefGoogle Scholar
  62. 62.
    Nashie El, M.: Der Einfluss von Schubverformung auf die Stabilität von axial gedrückten Stäben in überkritischem Bereich. Der Stahlbau, 46, no. 2 (1977), 52–54.Google Scholar
  63. 63.
    Nashie El, M.: Stress, Stability and Chaos in Structural Engineering: An Energy Approach. McGraw Hill Co., London, UK, 1990.Google Scholar
  64. 64.
    Pignataro, M., Luongo, A.: Multiple interactive buckling in thin-walled members in compression. Proc. 12th Coll. „Stability of Plates and Shell Structures“ (eds. P.Dubas and D.Vanderpitte ), Ghent, Belgium, 1987, 235–240.Google Scholar
  65. 65.
    Pignataro, M., Rizzi, N.: On the interaction between local and overall buckling of an asymmetric portal frame. Mecanica, 18 (1983), 92–96.CrossRefMATHGoogle Scholar
  66. 66.
    Prigogine, I., Stengers, I.: La Nouvelle Aliance. Methamorphose de la Science, Gallimard, 1979.Google Scholar
  67. 67.
    Raithel, A., Clemente, P.: On the stability of pin-joined stiffned frames. Thin-Walled Structures, 19 (1994), 211–220.CrossRefGoogle Scholar
  68. 68.
    Reis, A.J., Roorda, J.: Post-buckling behaviour under mode interaction. J. Eng. Mech. Div., EM 4 (1979), 609–621.Google Scholar
  69. 69.
    Roorda, J.: Concepts in elastic structural stability. In „Mechanics Today“, Vol. 1 (ed. S. Nemat-Nasser), 1972, 332–371.Google Scholar
  70. 70.
    Scholz, H.: Symmetrical and antisymmetrical buckling of unbraced frames. The Civ. Eng. in S. Africa, 1 (1979) 3–9.MathSciNetGoogle Scholar
  71. 71.
    Shanley, F.R.: Optimum design of eccentrically loaded columns. J. Struct. Div., 93 (ST 4) (1967) 201–226.Google Scholar
  72. 72.
    Sheinman, I., Simitses, G.J.: Axially loaded stiffned and unstiffened cylindrical shells. J. Appl. Mech., 49 (1982) 666–669.CrossRefGoogle Scholar
  73. 73.
    Silva, L.S., Hunt, G.W.: Interactive buckling in sandwich structure with core orthotropy, Mech. Struct & Mach., 18 (3) (1982) 666–669.Google Scholar
  74. 74.
    Svenson, S.E., Kragerup, J.: Collapse loads on laced columns. J. Struct. Div., ST 6 (1982) 1367–1383.Google Scholar
  75. 75.
    Svenson, S.E., Kragerup, J.: Interaction effects in two-flange built-up columns. In „Stability of Metal Structures“, ECCS Symp., Paris, France. 1983, 55–60.Google Scholar
  76. 76.
    Supple, W.J.: Coupled branching configurations in the elastic buckling of symmetric structural systems. Int. J. Mech. Sci., 9 (1967), 97–112.CrossRefMATHGoogle Scholar
  77. 77.
    Supple, W.J.: On the change in buckle pattern in elastic structures. Int. J. Mech. Sci., 10 (1968) 737–745.CrossRefGoogle Scholar
  78. 78.
    Supple, W.J.: Changes of wave-forms of plates in the postbuckling range. Int. J. Solids Struct., 6 (1970), 1243–1258.CrossRefGoogle Scholar
  79. 79.
    Thom, R.: Stabilite Structurelle et Morphogenese. Benjamin, Reading, UK, 1972.Google Scholar
  80. 80.
    Thompson, J.M.T.: Optimization as a generator of structural instability. Int. J. Mech. Sci., 14 (1972) 627–629.CrossRefGoogle Scholar
  81. 81.
    Thompson, J.M.T.: An engineering approach to interactive buckling. Int. J. Mech. Sci., 16 (1974) 335–336.CrossRefGoogle Scholar
  82. 82.
    Thompson, J.M.T.: Catastrophe theory and its role in applied mechanics. In „Theoretical and Applied Mecahnics“ (ed. W.T. Koiter ). North Holland Publ. Comp., The Netherlands, 1976, 451–458.Google Scholar
  83. 83.
    Thompson, J.M.T.: Instabilities and Catastrophes in Science and Engineering. Wiley, London, UK, 1982.MATHGoogle Scholar
  84. 84.
    Thompson, J.M.T.: Catastrophe theory in mechanics: Progress or digression. J. Struct. Mech., 10 (2) (1982) 167–175.CrossRefGoogle Scholar
  85. 85.
    Thompson, J.M.T., Gaspar, Z.: A buckling model for the set of umbilic catastrophes. Proc. Cambr. Phil. Soc. Math. Phys. Sci., 82 (1977) 497–507.CrossRefMATHMathSciNetGoogle Scholar
  86. 86.
    Thompson, J.M.T., Hunt, G.W.: A General Theory of Elastic Stability. Wiley, London, UK, 1973.MATHGoogle Scholar
  87. 87.
    Thompson, J.M.T., Hunt, G.W.: Towards a unified bifuraction theory. J. Appl. Math. Phys., 26 (1975) 581–603.CrossRefMATHMathSciNetGoogle Scholar
  88. 88.
    Thompson, J.M.T., Hunt, G.W.: Elastic Instability Phenomena. Wiley, Chichester, UK, 1984.MATHGoogle Scholar
  89. 89.
    Thompson, J.M.T., Supple, W.J.: Erosion of optimum designs by compound branching phenomena. J. Mech. Phys. Solids, 21 (3) (1973), 135–144.CrossRefGoogle Scholar
  90. 90.
    Thompson, J.M.T., Tan, J.K.L., Lim, K.C.: On the topological classification of postbuckling phenomena. J. Struct. Mech., 6 (4) (1978) 383–414.CrossRefGoogle Scholar
  91. 91.
    Thompson, J.M.T., Shorrock, S.A.: Bifuraction instability of an atomic lattice. J. Mech. Phys. Solids 23 (1975) 21–37.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • V. Gioncu
    • 1
  1. 1.Technical University of TimisoaraTimisoaraRomania

Personalised recommendations