Skip to main content

Micro-Dynamic Behaviour of a Nanometer Positioning System

  • Conference paper
AMST ’99

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 406))

  • 364 Accesses

Abstract

The identification of the main mechanical macro and micro-dynamics nonlinearities which are present in precision positioning systems is performed in this work. The employed compensation technique makes use of a dual-mode control law in which high precision is achieved by using an adaptive pulse width control typology. The obtained positioning accuracy is within the interval of uncertainty of the measurements performed by using a laser interferometric system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Slocum, A. H.: Precision Machine Design, Prentice-Hall, Englewood Cliffs, 1992

    Google Scholar 

  2. Ro, P. I. and Hubbel, P. I.: Model Reference Adaptive Control of Dual-Mode Micro/Macro Dynamics of Ball Screws for Nanometer Motion, ASME J Dyn Sys, Meas Contr, 115 (1993), 103–108

    Article  Google Scholar 

  3. Futami, S., Furutani, A. and Yoshida, S.: Nanometer positioning and its micro-dynamics, Nanotechnology, 1 (1990), 1, 31–37

    Article  Google Scholar 

  4. Courtney-Pratt, J. S. and Eisner, E.: The effect of a Tangential Force on the Contact of Metallic Bodies, Proc Royal Soc, A 238 (1957), 529–550

    Article  Google Scholar 

  5. Yang, S. and Tomizuka, M.: Adaptive Pulse Width Control for Precise Positioning Under the Influence of Stiction and Coulomb Friction, ASME J Dyn Sys, Meas Contr, 110 (1988), 3, 221–227

    Article  Google Scholar 

  6. Friedland, B. and Park, Y. J.: On Adaptive Friction Compensation, IEEE Trans Autom Contr, 37 (1992) 10, 1609–1612

    Article  MathSciNet  Google Scholar 

  7. Canudas, C., Astrom, K. J. and Braun, K.: Adaptive Friction Compensation in DC Motor Drives, Proc IEEE Int Conf Robotics Autom, San Francisco ( CA, USA ), 1986, 1556–1561

    Google Scholar 

  8. Armstrong-Helouvry, B., Dupont, P. and Canudas de Wit, C.: A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction, Automatica, 30 (1994) 7, 1083–1138

    Article  Google Scholar 

  9. Hale, L. C. and Slocum, A. H.: Design of Anti-backlash Transmissions for Precision Position Control Systems, Prec Eng, 16 (1994) 4, 244–258

    Article  Google Scholar 

  10. Rao, G. S. and Ro, P. I.: Control of a Traction Drive System, Int. Progress in Precision Engineering, Butterworth-Heinemann, Boston ( MA, USA ), 1993, 854–857

    Google Scholar 

  11. Dupont, P. E.: Avoiding Stick-Slip Through PD Control, IEEE Trans Autom Contr, 39 (1994) 5, 1094–1097

    Article  MathSciNet  Google Scholar 

  12. Armstrong-Helouvry, B. and Amin, B.: PID Control in the Presence of Static Friction: Exact and Describing Function Analysis, Proc 1994 American Control Conf., Baltimore ( MD, USA ), 1994, 597–601

    Google Scholar 

  13. Johnson, C. T. and Lorenz, R. D.: Experimental Identification of Friction and Its Compensation in Precise, Position Controlled Mechanisms, Proc. IEEE Industry Appl ication Soc. Ann. Meeting, Dearborn ( MI, USA ), 1991, 1400–1406

    Google Scholar 

  14. Smith, M. H., Annwamy, A. M. and Slocum A.: Adaptive Control Strategies for a Precision Machine Tool Axis, Precision Engineering, 17 (1995) 3, 12–24

    Google Scholar 

  15. Olejniczac, O., Bonis, M. and Lahmar, D.: Control of Permanent Magnets Brushless Electrical Motors-Performances of an Internal Model Control Algorithm, Int. Progress in Precision Engineering, Butterworth-Heinemann, Boston ( MA, USA ), 1993, 858–865

    Google Scholar 

  16. Steinmetz, C. R.: Sub-micron Position Measurement and Control on Precision Machine Tools with Laser Interferometry, Precision Engineering, 12 (1990) 1, 12–24

    Article  Google Scholar 

  17. Lee, H. S. and Tomizuka, M.: Robust Motion Controller Design for High-Accuracy Positioning Systems, to be published in IEEE Trans Ind Elec.

    Google Scholar 

  18. Armstrong-Helouvry, B.: Stick Slip and Control in Low-Speed Motion, IEEE Trans Autom Contr, 1993, 38 (1993) 10, 1483–1496

    Article  MathSciNet  Google Scholar 

  19. Astrom, K. J.: Theory and Applications of Adaptive Control–A Survey, Automatica, 19 (1983) 5, 471–486

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Zelenika, S., De Bona, F. (1999). Micro-Dynamic Behaviour of a Nanometer Positioning System. In: Kuljanic, E. (eds) AMST ’99. International Centre for Mechanical Sciences, vol 406. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2508-3_88

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2508-3_88

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83148-9

  • Online ISBN: 978-3-7091-2508-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics