Classical and Non-Classical Creep Models

  • H. Altenbach
Part of the International Centre for Mechanical Sciences book series (CISM, volume 399)


The following paper gives a short introduction into classical and non—classical creep models and their application to structural mechanics calculations. The analysis of creep processes is becoming more and more important in engineering practice. This development is connected with extended exploitation conditions and increasing safety standards. The quality of the predictions is influenced by the reliability of the material and structural models. In other words, it depends strongly on the possibilities to describe the creep problem, which should be analysed with the help of an adequate mathematical model.

In solid mechanics two types of equations are generally used — material independent and material dependent equations. The latter one should contain relations, which are able to reflect the individual response of the materials to external loadings. One goal in mechanics is to formulate suitable constitutive and, if necessary, evolution equations describing the material behaviour phenomenologically. Such an approach should be adopted for the material behaviour by an identification procedure which allows to find relations between the parameters in the equations and the experimentally determined characteristics of the material. The following considerations are related to these questions.

Classical creep equations are insensitive to the kind of loading. They describe, for example, identical behaviour under tension and compression (only the sign of the creep deformations is opposite). In addition, constitutive equations, which are able to reflect differences in the material behaviour with respect to the kind of loading, are discussed.


Constitutive Equation Material Behaviour Creep Strain Creep Behaviour Equivalent Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Billington E.W.: The Poynting-Swift effect in relation to initial and post-yield deformation, Solids & Structures, 21 (1985), pp. 355–372.CrossRefMATHGoogle Scholar
  2. 2.
    Truesdell C.: Second-Order Effects in the Mechanics of Materials, in: Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics (Edited by M. Reiner and D. Abir), Pergamon Press, Oxford et al., 1964 pp. 228–251, pp. 228–251.Google Scholar
  3. 3.
    Altenbach H., Altenbach J. and Zolochevsky A.: Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik, Deutscher Verlag für Grundstoffindustrie, Stuttgart, 1995.Google Scholar
  4. 4.
    Altenbach J. and Altenbach H.: Einführung in die Kontinuumsmechanik, Teubner Studienbücher Mechanik, Teubner, Stuttgart, 1994.Google Scholar
  5. 5.
    Lurie A.I.: Nonlinear Theory of Elasticity, North-Holland Publ. Company, Amsterdam, 1990.Google Scholar
  6. 6.
    Truesdell C. and Noll W.: The non-linear field theories of mechanics, in: Encyclopedia of Physics (Edited by S. Flügge), volume III/3, Springer, Heidelberg u.a., 1965.Google Scholar
  7. 7.
    Ashby M.F.: Technology of the 1990’s: advanced materials and predictive design, Phil. Trans. R. Soc. London, A322 (1987), pp. 393–407.CrossRefGoogle Scholar
  8. 8.
    Altenbach H. and Blumenauer H.: Grundlagen und Anwendungen der Schädigungsmechanik, Neue Hütte, 34 (1989), pp. 214–219.Google Scholar
  9. 9.
    Haupt P.: On the mathematical modelling of material behaviour in continuum mechanics, Acta Mechanica, 100 (1993), pp. 129–154.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Krawietz A.: Materialtheorie. Mathematische Beschreibung des phänomenologischen thermomechanischen Verhalten, Springer, Berlin et al., 1986.Google Scholar
  11. 11.
    Lemaitre J. and Chaboche J.-L.: Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1990.CrossRefMATHGoogle Scholar
  12. 12.
    Giesekus H.: Phänomenologische Rheologie, Springer, Berlin, 1994.CrossRefMATHGoogle Scholar
  13. 13.
    Palmov V.: Vibrations in Elasto-Plastic Bodies, Springer, Berlin et al., 1998.CrossRefGoogle Scholar
  14. 14.
    Betten J.: Anwendungen von Tensorfunktionen in der Kontinuumsmechanik anisotroper Materialien, ZAMM, 78 (1998), pp. 507–521.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Riedel H.: Fracture at High Temperatures, Materials Research and Engineering, Springer, Berlin et al., 1987.CrossRefGoogle Scholar
  16. 16.
    Kowalewski Z.L., Hayhurst D.R. and Dyson B.F.: Mechanisms-based creep constitutive equations for an aluminium alloy, J. Strain Anal., 29 (1994), pp. 309–316.CrossRefGoogle Scholar
  17. 17.
    Tvergaard V.: Micromechanical modelling of creep rupture, ZAMM, 71 (1991), pp. 23–32.Google Scholar
  18. 18.
    Rabotnov Yu.N.: Creep Problems in Structural Members, North Holland, Amsterdam, London, 1969.MATHGoogle Scholar
  19. 19.
    Sluzalec A.: Introduction to Nonlinear Thermomechanics, Springer, Berlin et al., 1992.CrossRefMATHGoogle Scholar
  20. 20.
    Skrzypek J.J.: Plasticity and Creep, CRC Press, Boca Raton et al., 1993.MATHGoogle Scholar
  21. 21.
    Odqvist F.K.G. and Hult J.: Kriechfestigkeit metallischer Werkstoffe, Springer, Berlin u.a., 1962.CrossRefGoogle Scholar
  22. 22.
    Hayhurst D.R.: The use of continuum damage mechanics in creep analysis and design, J. Strain Anal., 29 (1994), pp. 233–241.CrossRefGoogle Scholar
  23. 23.
    Kachanov L.M.: Introduction to Continuum Damage Mechanics, Martinus Nijhoff Publishers, Dordrecht et al., 1986.CrossRefMATHGoogle Scholar
  24. 24.
    Lemaitre J.: A Course on Damage Mechanics, Springer, Berlin et al., 1992.CrossRefMATHGoogle Scholar
  25. 25.
    Murakami S.: Progress in continuum damage mechanics, JSME, 30 (1987), pp. 701–710.Google Scholar
  26. 26.
    Besseling J.F. and van der Giessen E.: Mathematical Modelling of Inelastic Deformation, Chapman & Hall, London et al., 1993.Google Scholar
  27. 27.
    Penny R.K. and Mariott D.L.: Design for Creep, Chapman & Hall, London et al., 1995.CrossRefGoogle Scholar
  28. 28.
    Kraus H.: Creep Analysis, Wiley, New York et al., 1980.Google Scholar
  29. 29.
    Gummert P. Contributions and discussions (during the course), 1998, CISM Udine.Google Scholar
  30. 30.
    Rabotnov Yu.N.: Mekhanika deformiruemogo tverdogo tela (Mechanics of the de-formable solid body, in Russ.), Nauka, Moskva, 1979.Google Scholar
  31. 31.
    Frost H.J. and Ashby M.F.: Deformation-Mechanism Maps, Pergamon Press, Oxford et al., 1982.Google Scholar
  32. 32.
    Krempl E.: Cyclic creep–An interpretive literature survey, Welding Research Council Bull., (1974), pp. 63–120.Google Scholar
  33. 33.
    Boyle J.T. and Spence J.: Stress Analysis for Creep, Butterworth, London, 1983.Google Scholar
  34. 34.
    Malinin N.N.: Raschet na polzuchest’ konstrukcionnykh elementov (Creep calculations of structural elements, in Russ.), Mashinostroenie, Moskva, 1981.Google Scholar
  35. 35.
    Mises R. v.: Mechanik der plastischen Formänderung von Kristallen, ZAMM, 8 (1928), pp. 161–185.CrossRefMATHGoogle Scholar
  36. 36.
    Hill R.: On the classical constitutive relations for elastic/plastic solids, in: Recent Progress in Applied Mechanics (Folke Odqvist Volume), Almqvist and Viksell, Stockholm, 1967 pp. 241–249, pp. 241–249.Google Scholar
  37. 37.
    Skrzypek J.J. and Ganczarski A.: Modelling of Material Damage and Failure of Structures, Springer, Berlin et al., 1998.Google Scholar
  38. 38.
    Leckie F.A. and Hayhurst D.R.: Constitutive equations for creep rupture, Acta Metall., 25 (1977), pp. 1059–1070.CrossRefGoogle Scholar
  39. 39.
    Lewin G. and Lehmann B.: Ergebnisse über das Spannungs-Verformungsverhalten von PVC, dargestellt an einem zylindrischen Bauelement, Wiss. Z. TH Magdeburg, 21 (1977), pp. 415–422.Google Scholar
  40. 40.
    Nechtelberger E.: Raumtemperaturkriechen und Spannungsabhängigkeit des E-Moduls von Graugußwerkstoffen, Österr. Ing. Archit. Z., 130 (1985), pp. 29–36.Google Scholar
  41. 41.
    Pintschovius L., Gering E., Munz D., Fett T. and Soubeyroux J.L.: Determination of non-symmetric secondary creep behaviour of ceramics by residual stress measurements using neutron diffractometry, J. Mater. Sci. Lett., 8 (1989), pp. 811–813.CrossRefGoogle Scholar
  42. 42.
    Schlimmer M.: Zeitabhängiges mechanisches Werkstoffverhalten, Springer, Berlin et al., 1984.CrossRefGoogle Scholar
  43. 43.
    Vandervoort R.R. and Barmore W.L.: Compressive creep of polycrystalline beryllium oxide, J. Amer. Ceram., 46 (1963), pp. 180–184.CrossRefGoogle Scholar
  44. 44.
    Zolochevskij A.A.: Kriechen von Konstruktionselementen aus Materialien mit von der Belastung abhängigen Charakteristiken, Technische Mechanik, 9 (1988), pp. 177–184.Google Scholar
  45. 45.
    Betten J. and Waniewski M.: Einfluß der plastischen Anisotropie auf das sekundäre Kriechverhalten inkompressibler Werkstoffe, Rheologica Acta, 25 (1986), pp. 166–174.CrossRefGoogle Scholar
  46. 46.
    Kowalewski Z.: The surface of constant rate of energy dissipation under creep and its experimental determination, Arch. Mech., 39 (1987), pp. 445–459.Google Scholar
  47. 47.
    Kowalewski Z.: Secondary creep surface and its evolution influenced by room temperature plastic deformation, Besançon, 1988.Google Scholar
  48. 48.
    Kowalewski Z.: Creep behaviour of copper under plane stress state, Int. J. Plasticity, 7 (1991), pp. 387–400.CrossRefMathSciNetGoogle Scholar
  49. 49.
    Murakami S. and Sawczuk A.: A unified approach to constitutive equations of inelasticity based on tensor function representations, Nucl. Eng. Des., 65 (1981), pp. 33–47.Google Scholar
  50. 50.
    Waniewski M.: A simple law of steady-state creep for material with anisotropy introduced by plastic prestraining, Ingenieur-Archiv, 55 (1985), pp. 368–375.CrossRefMATHGoogle Scholar
  51. 51.
    Sarabi B.: Anstrengungsverhalten von Kunststoffen unter biaxial-statischer Belastung, Kunststoffe, 76 (1986), pp. 182–186.Google Scholar
  52. 52.
    Cristescu N.: Rock Rheology, Kluwer Academic Publ., Dordrecht, 1989.CrossRefMATHGoogle Scholar
  53. 53.
    Foux A.: An Experimental Investigation of the Poynting Effect, in: Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics (Edited by M. Reiner and D. Abir), Pergamon Press, Oxford et al., 1964 pp. 228–251, pp. 228–251.Google Scholar
  54. 54.
    Hecker F.W.: Die Wirkung des Bauschinger-Effekts bei großen Torsions-Formänderungen, Ph.D. thesis, TH Hannover, 1967.Google Scholar
  55. 55.
    Nishitani T.: Mechanical behavior of nonlinear viscoelastic celluloid under superimposed hydrostatic pressure, Trans. ASME. J. Pressure Vessel Technol., 100 (1978), pp. 271–276.CrossRefGoogle Scholar
  56. 56.
    Swift H.W.: Length changes in metals under torsional overstrain, Engineering, 163 (1947), pp. 253–257.Google Scholar
  57. 57.
    Altenbach H. and Zolochevsky A.: A generalized failure criterion for three-dimensional behaviour of isotropic materials, Engng Frac. Mech., 54 (1996), pp. 75–90.Google Scholar
  58. 58.
    Chen W.F. and Zhang H.: Structural Plasticity, Springer, Berlin et al., 1991.CrossRefGoogle Scholar
  59. 59.
    Zyczkowski M.: Combined Loadings in the Theory of Plasticity, PWN-Polish Scientific Publisher, Warszawa, 1981.MATHGoogle Scholar
  60. 60.
    Hayhurst D.R.: Creep rupture under multiaxial states of stress, J. Mech. Phys. Solids, 20 (1972), pp. 381–390.CrossRefGoogle Scholar
  61. 61.
    Betten J. Zur Verallgemeinerung der Invariantentheorie in der Kriechmechanik, Rheologica Acta, 14 (1975), pp. 715–720.CrossRefMATHGoogle Scholar
  62. 62.
    Backhaus G.: Deformationsgesetze, Akademie-Verlag, Berlin, 1983.Google Scholar
  63. 63.
    Gorey B.V., Rubanov V.V. and Sosnin O.V.: 0 postroenii uravnenii polzuchesti dlya materialov s raznymi svoistvami na rastyazhenie i szhatie ( On the formulation of creep equations for materials with different properties in tension and compression, in Russ. ), Zhurnal prikladnoi mekhaniki i tekhnicheskoi fiziki, (1979), pp. 121–128.Google Scholar
  64. 64.
    Hill R.: The Mathematical Theory of Plasticity, Materials Research and Engineering, Oxford University Press, London, 1950.Google Scholar
  65. 65.
    Betten J.: Zur Aufstellung einer Integritätsbasis für Tensoren zweiter und vierter Stufe, ZAMM, 62 (1982), pp. T 274 - T 275.Google Scholar
  66. 66.
    Altenbach H., Dankert M. and Zolotevskij A.: Anisotrope mathematisch-mechanische Modelle für Werkstoffe mit von der Belastung abhängigen Eigenschaften, Technische Mechanik, 11 (1990), pp. 5–13.Google Scholar
  67. 67.
    Altenbach H., Schieße P. and Zolochevsky A.: Zum Kriechen isotroper Werkstoffe mit komplizierten Eigenschaften, Rheologica Acta, 30 (1991), pp. 388–399.CrossRefGoogle Scholar
  68. 68.
    Altenbach H. and Zolochevsky A.: Kriechen dünner Schalen aus anisotropen Werkstoffen mit unterschiedlichem Zug-Druck-Verhalten, Forschung im lngenieurwesen, 57 (1991), pp. 172–179.CrossRefGoogle Scholar
  69. 69.
    Tsvelodub I.Yu.: Postulat ustoichivosti i ego prilozheniya v teorii polzuchesti metallicheskikh materialov (On the stability postulate and its applications in the creep theory of metallic materials, in Russ.), Institut gidrodinamiki, Novosibirsk, 1991.Google Scholar
  70. 70.
    Nikitenko A.F. and Tsvelodub I.Yu.: 0 polzuchesti anizotropnykh materialov s raznymi svoistvami na rastyazhenie i szhatie (On creep of anisotropic materials with different properties in tension and compression, in Russ.), Dinamika sploshnoi sredy, 43 (1979), pp. 69–78.Google Scholar
  71. 71.
    Altenbach H. and Zolochevsky A.A.: Eine energetische Variante der Theorie des Kriechens und der Langzeitfestigkeit für isotrope Werkstoffe mit komplizierten Eigenschaften, ZAMM, 74 (1994), pp. 189–199.CrossRefMATHGoogle Scholar
  72. 72.
    Altenbach H., Morachkovsky O., Naumenko K. and Sichov A.: Zum Kriechen dünner Rotationsschalen unter Einbeziehung geometrischer Nichtlinearität sowie der Asymmetrie der Werkstoffeigenschaften, Forschung im lngenieurwesen, 62 (1996), pp. 47–57.CrossRefGoogle Scholar
  73. 73.
    Altenbach H., Morachkovsky O., Naumenko K. and Sychov A.: Geometrically nonlinear bending of thin-walled shells and plates under creep-damage conditions, Arch. Appl. Mech., 67 (1997), pp. 339–352.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • H. Altenbach
    • 1
  1. 1.Martin Luther UniversityHalle-WittenbergGermany

Personalised recommendations