Premises to a Multifield Approach to Stochastic Damage Evolution

  • P. M. Mariano
Part of the International Centre for Mechanical Sciences book series (CISM, volume 410)


In the present chapter, some remarks about the mechanics of stochastically microcracked bodies are discussed. After preliminary remarks on measure and stochastic processes, some hints of the standard approach of internal variable models to damage phenomena are discussed and certain new results added. The main part of the paper concerns with the explanation of the principal properties of a multifield approach to damaged (in particular microcracked) bodies in which order parameter describe the microcrack state, they are considered as observable quantities; so interactions are associated to them and need be balanced following additional balance equations. The order parameters are here considered as semisubmartingale stochastic processes.


Dirichlet Form Microcrack Density Material Patch Configurational Force Effective Elasticity Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambrosio, L. (1987). Corso introduttivo alla teoria geometrica della misura ed alle superfici minime, Scuola Normale Superiore, Pisa.Google Scholar
  2. Antman, S. S. (1988). Physically unacceptable viscous stresses, Zeitschrift far Angewandte Mathematik and Physik - ZAMP 49: 980–988.MathSciNetCrossRefADSGoogle Scholar
  3. Augusti, G. and Mariano, P. M. (1999). Stochastic evolution of microcracks in continua, Computer Methods in Applied Mechanics and Engineering 168: 155–171.MathSciNetCrossRefMATHADSGoogle Scholar
  4. Bazant, Z. P. and Pijaudier-Cabot, G. (1988). Nonlocal continuum damage, localization. instability and convergence, ASCE-Journal of Applied Mechanics 55: 287–293.CrossRefMATHADSGoogle Scholar
  5. Capriz, G. and Giovine, P., On microstructural inertia, Mathematical Models and Methods in Applied Sciences 7: 211–216.Google Scholar
  6. Capriz, G. and Podio-Guidugli, P. (1977). Formal structure and classification of theories of oriented materials, Annali Matematica Pura e Applicata 111: 17–39.MathSciNetCrossRefGoogle Scholar
  7. Capriz, G. and Podio-Guidugli, P. (1983). Structured continua from a Lagrangian point of view, Annali Matematica Pura e Applicata 135: 1–25.MathSciNetCrossRefMATHGoogle Scholar
  8. Capriz, G. (1985). Continua with latent microstructure, Archive Rational Mechanics and Analisis 90: 43–56.MathSciNetCrossRefMATHADSGoogle Scholar
  9. Capriz, G. (1989). Continua with microstructure, Springer Verlag, Berlin.CrossRefMATHGoogle Scholar
  10. Di Carlo, A. (1996). A non-standard format for continuum mechanics, In Batra, R. C., and Beatty, F., eds., Contemporary research in the mechanics and mathematics of materials, CIMNE, Barcelona. 263–268.Google Scholar
  11. Doob, J. L. (1994). Measure theory, Springer Verlag, Berlin.CrossRefMATHGoogle Scholar
  12. Emery, M. (1994). Stochastic calculus in manifolds, Springer Verlag, Berlin.Google Scholar
  13. Ericksen, J. L. (1995). Remarks concerning forces on line defects, Zeitschrift fur Angewandte Mathematik und Physik - ZAMP 46: S247 - S271.MathSciNetMATHGoogle Scholar
  14. Eshelby, J. D. (1975). The elastic energy-momentum tensor, Journal of Elasticity 5: 321–335.MathSciNetCrossRefMATHGoogle Scholar
  15. Eshelby, J. D. (1951). The force on elastic singularity, Philosophical Transactions of the Royal Society of London A 244: 87–1 12.Google Scholar
  16. Frémond, M. and Nedjar, B. (1996). Damage, gradient of damage and principle of virtual power, International Journal of Solids Structures, 33: 1083–1 103.Google Scholar
  17. Govindjee, S., Kay, G. J. and Simo, J. C. (1995). Anisotropie modelling and numerical simulation of brittle damage in concrete, International Journal Numerical Methods in Engineering 38: 3611–3633.CrossRefMATHADSGoogle Scholar
  18. Gurtin, M. E. (1995). The nature of configurational forces, Archive for Rational Mechanics and Analysis 131: 67–100.MathSciNetCrossRefMATHADSGoogle Scholar
  19. Herrmann, H. J. and Roux, S. eds. (1990). Statistical models for the fracture of disordered media, North-Holland, Amsterdam.Google Scholar
  20. Krajcinovic, D. (1996). Damage mechanics, North-Holland, Amsterdam.Google Scholar
  21. Lemaitre, J. (1992). A course on damage mechanics, Springer Verlag, Berlin.CrossRefMATHGoogle Scholar
  22. Letta, G. (1984). Martingales et intégration stochastique, Scuola Normale Superiore, Pisa.MATHGoogle Scholar
  23. Ma, Z.-M- and Röchner, M. (1992). Introduction to the theory of (non-symmetric) Dirichlet forms,Springer Verlag.Google Scholar
  24. Mariano, P. M. and Augusti, G. (1998). Multifield description of microcracked continua. A local model, Mathematics and Mechanics of Solids 3: 237–254.MathSciNetCrossRefGoogle Scholar
  25. Mariano, P. M. and Capriz, G. (1999). Superfici di discontinuità nelle teorie multicampo, Proceedings of the AIMETA’99, CD-rom.Google Scholar
  26. Mariano, P. M. and Stazi, F. L. (1999). Strain localization in elastic microcracked bodies, forthcoming.Google Scholar
  27. Mariano, P. M. and Trovalusci, P. (1999). Constitutive relations for elastic microcracked bodies: from a lattice model to a multifield continuum description, International Journal of Damage Mechanics 8: 153–173.CrossRefGoogle Scholar
  28. Mariano, P. M. (1999a) Configurational forces in continua with microstructure, Zeitschrift für Angewandte Mathematik und Physik - ZAMP, under press.Google Scholar
  29. Mariano, P. M. (1995). Fracture in stuctured continua, Internation Journal Damage Mechanics 4: 283–289.CrossRefGoogle Scholar
  30. Mariano, P. M. (1999b). Some remarks on the variational description of microcracked bodies, International Journal Non-Linear Mechanics 34: 633–642.Google Scholar
  31. Markov, K. Z. (1995). On a microstructural model of damage in solids, International Journal Engineering Science, 33: 139–150.CrossRefMATHGoogle Scholar
  32. Miranda, C. (1978). Istituzioni di analisi funzionale lineare, UMI - Oderisi Editore, Gubbio.Google Scholar
  33. Mosco, U. (1994). Composite media and asymptotic Dirichlet forms, Journal of Functional Analysis 123: 368–421.MathSciNetCrossRefMATHGoogle Scholar
  34. Nabarro, F. R. N. (1985). Material forces and configurational forces in interactions of elastic singularities, In Aifantis, E. C., Hirth, J. P., eds., Proceedings of the International Symposium on Mechanics of Dislocations, American Society of Metals, Metals Park, 1–3.Google Scholar
  35. Noll, W. and Virga, E. G. (1988). Fit regions and functions with bounded variation, Archive Rational Mechanics Analysis 52: 62–92.MathSciNetADSGoogle Scholar
  36. Rudin, W. (1987). Real and complex analysis, Mc Graw-Hill, Singapore.MATHGoogle Scholar
  37. Segev, R. and Rodnay, G. (1999). Interactions on manifolds and the construction of material structure, International Journal of Solids and Structures, under press.Google Scholar
  38. Segev, R., A geometrical framework for the static of materials with microstructure, Mathematical Models Methods in Applied Sciences 4: 871–897.Google Scholar
  39. Šilhavý, M. (1985). Phase transitions in non-simple bodies, Archive Rational Mechanics Analysis 88: 135–161.CrossRefMATHADSGoogle Scholar
  40. Šilhavý, M. (1997). The mechanics and thermodynamics of continuous media,Springer Verlag.Google Scholar
  41. Šilhavý, M. (1984). Thermostatics of non-simple materials, Czechoslovak Journal of Physics B 34: 601–621.CrossRefADSGoogle Scholar
  42. Simo, J. C. and Ju, J. W. (1987). Strain-and stress-based continuous damage models–I. Formulation, International Journal of Solids and Structures 23: 821–840.CrossRefMATHGoogle Scholar
  43. Truesdell, C. A. (1991). A first course in rational continuum mechanics, Academic Press, Boston.MATHGoogle Scholar
  44. Valanis, K. C. (1991). A global damage theory and the hiperbolicity of the wave problem, ASME-Journal of Applied Mechanics 58: 311–316.CrossRefMATHADSGoogle Scholar
  45. Weyl, H. (1923). Mathematische Analyse des Raumproblemes, Springer Verlag, Berlin.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • P. M. Mariano
    • 1
  1. 1.University of Rome “La Sapienza”RomeItaly

Personalised recommendations