Advertisement

Micro-Crack Clustering, Non Local and Gradient Damage Models

  • G. Pijaudier-Cabot
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 410)

Abstract

The aim of this chapter is to show how the results from statistical analyses of damage and micro mechanics can inspire phenomenological modelling. namely continuous damage models. Non local and gradient dependent damage models are introduced. The analysis of stain localisation shows the importance of incorporating an internal length in the constitutive relations, while this internal length can be regarded as a correlation length in statistical models. Finally, these continuum models are shown to be consistent with fracture mechanics analyses of structural components.

Keywords

Constitutive Relation Correlation Length Damage Model Crack Density Damage Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazant, Z.P. (1985). Mechanics of Distributed Cracking. Applied Mechanics Review 39: 675705.Google Scholar
  2. Bazant, Z.P. (1987). Why Continuum Damage is Non Local: Justification by Quasi-Periodic Microcrack Array. Mechanics Research Communications 14: 407–419.CrossRefMATHGoogle Scholar
  3. Bazant, Z.P. and Pijaudier-Cabot, G. (1998). Non local Continuum Damage, Localisation Instability and Convergence. Journal of Applied Mechanics ASME 55: 287–294.CrossRefADSGoogle Scholar
  4. Bazant, Z.P. and Pijaudier-Cabot, G. (1989). Measurement of Characteristic Length of Non local Continuum. Journal of Engineering Mechanics ASCE 115: 755–767.CrossRefGoogle Scholar
  5. Benallal, A., Billardon, R. and Geymonat, G. (1988). Some Mathematical Aspects of the Damage Softening Rate Problem. Cracking and Damage. J. Mazars and Z.P. Bazant Eds., Elsevier Pubs., 247–258.Google Scholar
  6. Bode, L., Tailhan, J.L., Pijaudier-Cabot, G., La Borderie, C. and Clément, J.L. (1997). Failure Analysis of Initially Cracked Concrete Structures. Journal of Engineering Mechanics ASCE 123: 1153–1160.CrossRefGoogle Scholar
  7. Chudnovsky, A., Botsis, J. and Kunin, B. (1989). The Role of Microdefects in Fracture Propagation Process. Cracking and Damage. J. Mazars and Z.P. Bazant Eds., Elsevier Pubs., 140–149.Google Scholar
  8. Courant R. and Hilbert D. (1953). Methods of Mathematical Physics. Vo. 1, Interscience Pubs. Cowin, S.C. and Nunziato, J.W. (1983). Linear Elastic Materials with Voids. Journal of Elasticity 13: 125–147.Google Scholar
  9. De Arcangelis, L. and Herrmann, H.J. (1989). Scaling and Multiscaling Laws in Random Fuse Networks. Physical Review B 39: 2678–2684.CrossRefADSGoogle Scholar
  10. Delaplace, A., Pijaudier-Cabot, G., and Roux, S. (1996). Progressive Damage in Discrete Models and Consequences on Continuum Modelling. Journal of the Mechanics and Physics of Solids 44: 99–136.MathSciNetCrossRefMATHADSGoogle Scholar
  11. Delaplace, A., Roux, S., and Pijaudier-Cabot, G. (1999). Damage Cascade in a Softening Interface. International Journal of Solids and Structures 36: 1403–1426.MathSciNetCrossRefMATHGoogle Scholar
  12. Eringen, A.C. and Edelen, D.G.B. (1972). On Non local Elasticity. International Journal of Engineering Science 10: 233–248.MathSciNetCrossRefMATHGoogle Scholar
  13. Goodman, M.A., Cowin, S.C. (1972). A Continuum Theory for Granular Materials. Archives of Rational Mechanics Analysis 44: 249.MathSciNetMATHADSGoogle Scholar
  14. Kachanov, M. (1987). Elastic Solids with Many Cracks. A Simple Method of Analysis. International Journal of Solids and Structures 23: 23–43.CrossRefMATHGoogle Scholar
  15. Krajcinovic, D. (1989), Damage Mechanics. Mechanics of Materials 8: 117–197.CrossRefGoogle Scholar
  16. Krajcinovic, D. and Basista, M. (1991). Rupture of Central Force Lattices Revisited. Journal de Physique 1: 241–245.Google Scholar
  17. Krajcinovic, D. and Vujosevic, M. (1998), Strain Localization - Short to Long Correlation Length Transition. International Journal of Solids and Structures 35, 4147.CrossRefMATHGoogle Scholar
  18. Laws, N. and Brockenbrough, J.R. (1987). The Effect of Micro crack Systems on the Loss of Stiffness of Brittle Solids. International Journal of Solids and Structures 23: 1247–1268.CrossRefGoogle Scholar
  19. Lemaitre, J. and Chaboche, J.L. (1989). Mechanics of Solid Materials. Cambridge University PressGoogle Scholar
  20. Mariano, E.M. and Trovalusci, P. (1999). Constitutive Relations for Elastic Microcracked Bodies: from a Lattice Model to a Multifield Continuum Description. International Journal of Damage Mechanics 8: 153–173.CrossRefGoogle Scholar
  21. Mazars, J. (1984). Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure. Thèse d’état de l’Université Paris VI, France.Google Scholar
  22. Peerlings, R.H., de Borst, R., Brekelmans, W.A.M., de Vre., J.H.P. (1995). Computational Modelling of Gradient Enhanced Damage for Fracture and Fatigue Problems. Computational Plasticity, D.R.J. Owen, E. Onate, E. Hinton Eds, Pineridge Press, 1: 975986.Google Scholar
  23. Pijaudier-Cabot, G. and Berthaud, Y. (1990). Effets de interactions dans l’endommagement d’un milieu fragile–formulation nonlocale. Cómptes Rendus de l’Académie des Sciences t. 310, II: 1577–1582.Google Scholar
  24. Pijaudier-Cabot, G. and Bazant, Z.P. (1987). Nonlocal Damage Theory. Journal of Engineering Mechanics ASCE 113: 1512–1533.CrossRefGoogle Scholar
  25. Pijaudier-Cabot, G. and Bodé, L. (1992). Localisation in a Nonlocal Continuum. Mechanics Research Communications 19: 145–153.CrossRefMATHGoogle Scholar
  26. Pijaudier-Cabot, G. and Benallal, A. (1993). Strain Localisation and Bifurcation in a Non local Continuum. International Journal of Solids and Structures 30. 1761–1775.Google Scholar
  27. Pijaudier-Cabot, G., Burlion, N. (1996). Damage and Localisation in Elastic Materials with Voids. International Journal of Cohesive Frictional Materials 1: 129–144.CrossRefGoogle Scholar
  28. Rudnicki, J.W. and Rice, J.R. (1975). Conditions for the Localisation of Deformation in Pressure Sensitive Dilatant Materials. Journal of the Mechanics and Physics of Solids 23: 371–394.CrossRefADSGoogle Scholar
  29. Saouridis. C. (1988). Identification et numérisation objectives des comportements adoucissants - une approche multi-échelle du comportement du béton. Thèse de Doctorat, Université Paris VI, France.Google Scholar
  30. Schmittbuhl. J. and Roux. S. k 1994 ). Influence of Internal Stresses on Fracture of Heterogeneous Media. Modern Simulations in Material Science Engineering 2: 21–52.CrossRefADSGoogle Scholar
  31. Sluys, L.J. (1992). Wave Propagation, Localisation and Dispersion in Softening Solids, Doctoral Dissertation. Delft University of Technology, The Netherlands.Google Scholar
  32. Valanis, K C. (1991). A Global Damage Theory’ and the Hyperbolicity of the Wave Problem. Journal of Applied Mechanics ASME 58: 31 1–3 16.Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • G. Pijaudier-Cabot
    • 1
  1. 1.LMT-CachanEcole Normale Supérieure de CachanCachanFrance

Personalised recommendations