Measurement of Damage Parameters of Brittle Disordered Media Like Concrete and Rock

  • J. van Mier
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 410)


Current ideas on fracture modelling and experiments for describing the degradation of brittle disordered materials such as concrete, rock and non-transformable ceramics and the like are described. The behaviour of such materials is intimately linked to the different scales at which a distinct structure of the material can be recognized. In the ideal situation, one single fracture model should include all possible size/scale transitions (from micro- to meso-level and from meso- to macro-level) in order to be universal applicable. Continuum damage theories on the one hand seem capable of describing the behaviour of said materials when distributed damage occurs, whereas fracture mechanics based approaches seem necessary when localization of damage occurs. Non-local versions of damage models seem capable of describing the localization stage as well. All the different models are fed by experimental observations. Getting a theory fundamentally correct implies that a test against and an interpretation of phenomena observed in experiments are an essential ingredient. Knowledge of the capabilities and limitations of existing experimental methods may help develop more accurate and physically consistent fracture theories. The major part of this chapter is dedicated to experimental methods, in most cases applied to concrete.


Uniaxial Tension Linear Elastic Fracture Mechanic Damage Parameter Crack Pattern Interfacial Transition Zone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashby, M.F. (1993). Materials Selection in Mechanical Design. Oxford: Pergamon Press.Google Scholar
  2. Ashby, M.F. and Jones, D.R.H. (1986). Engineering Materials 2 — An Introduction to Microstructures, Processing and Design. Oxford: Pergamon Press.Google Scholar
  3. Barenblatt, G.I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics 7: 55–129.MathSciNetCrossRefGoogle Scholar
  4. Batant, Z.P. (1997). Scaling of quasi-brittle fracture: asymptotic analysis. International Journal of Fracture 83: 19–40.CrossRefGoogle Scholar
  5. Beranek, W.J. and Hobbelman, G.J., (1995). 2D and 3D modelling of concrete as an assemblage of spheres. Reevaluation of the failure criterion. In Proceedings FraMCoS-2 ‘Fracture Mechanics of Concrete Structures’, Freiburg: AEDIFICATIO Publishers. 965–974.Google Scholar
  6. Berthaud, Y. (1991). Damage measurements in concrete via an ultrasonic technique. Part I Experiments, Part II Modelling, Cement and Concrete Research 21: 73–82 and 219–228.Google Scholar
  7. Bisschop, J. and Van Mier, J.G.M. (1999). Quantification of shrinkage microcracking in young mortar with fluorescence light microscopy and ESEM. In Proceedings 7` h Euroseminar on ‘Microscopy Applied to Building Materials’, Delft, June 29-July 2, 1999. 223–232.Google Scholar
  8. Broek, D. (1982). Elementary Engineering Fracture Mechanics. Dordrecht: Martinus Nijhoff Publishers, 3rd revised edition.Google Scholar
  9. Carpinteri, A., Chiaia, B., and Ferro, G. (1994). Multifractal scaling law for the nominal strength variation of concrete structures. In Mihashi H., Okamura H. and Batant Z.P., eds., Size Effect in Concrete Structures, London: EandFN Spon. 173–185.Google Scholar
  10. Chiaia, B., Vervuurt, A., and Van Mier, J.G.M. (1997). Lattice model evaluation of progressive failure in disordered particle composites, Engineering Fracture Mechanics 57: 301–318.CrossRefGoogle Scholar
  11. Chiaia, B., Van Mier, J.G.M. and Vervuurt, A. (1998). Crack growth mechanisms in four different concretes: Microscopic observations and fractal analysis. Cement and Concrete Research 28: 103–114.CrossRefGoogle Scholar
  12. Choi, S. and Shah, S.P. (1998). Nondestructive evaluation of cement-based materials with computer vision, in Proceedings FraMCoS-3 ‘Fracture Mechanics of Concrete Structures’, Freiburg: AEDIFICATIO Publishers. 17–24.Google Scholar
  13. De Borst, R., Geers, M.G.D. and Peerlings, R.H.J. (1999). Computational Damage Mechanics. In Carpinteri, A. and Aliabadi, M.H., eds., Computational Fracture Mechanics in Concrete Technology, Southampton: WIT Press/Computational Mechanics Publications. 33–69.Google Scholar
  14. Duan, K. and Van Mier, J.G.M. (1999). Crack growth in four concretes under monotonic or cyclic splitting load. In Azizinamini, A., Darwin, D. and French, C., eds., Proceedings Engineering Foundation 1“ Intl. Conf. on High Strength Concrete, Kona, Hawaii, July 13–18, 1999, Reston (VA): ASCE. 444–456.Google Scholar
  15. Duda, H., (1991). Grain model for the determination of the stress-crack width relation. In Elfgren, L. and Shah, S.P., eds., Analysis of Concrete Structures by Fracture Mechanics. London/New York: Chapman andHall. 88–96.Google Scholar
  16. Dugdale, D.S. (1960). Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids. 8: 100–108.CrossRefADSGoogle Scholar
  17. Fanping Thou (1988). Some Aspects of Tensile Fracture Behaviour and Structural Response of Cementitious Materials. Report TVBM 1008, Lund Institute of Technology, Lund, Sweden.Google Scholar
  18. Foote, R.M.L., Mai, Y.-W. and Cotterell, B. (1986). Crack growth resistance curves in strain softening materials. Journal of the Mechanics and Physics of Solids 34: 593–607.CrossRefADSGoogle Scholar
  19. Griffith, A.A. (1921). The phenomenon of rupture and flow in solids, Philosophical Transactions of the. Royal Society London A221: 163–197.CrossRefADSGoogle Scholar
  20. Groenenboom, J. (1998). Acoustic Monitoring of Hydraulic Fracture Growth, Ph.D Dissertation, Delft University of Technology, Delft, The Netherlands.Google Scholar
  21. Hallbauer, D.K., Wagner, H., and Cook, N.W.G. (1973). Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. International Journal of Rock Mechanics and Mineralogical Sciences and Geomechanics Abstracts 10: 713–726.CrossRefGoogle Scholar
  22. Herrmann, H.J., Hansen, A. and Roux, S., (1989). Fracture of disordered, elastic lattices in two dimensions. Physical Review B 39: 637–648.CrossRefADSGoogle Scholar
  23. Herrmann, H.J. and Roux, S. (1990). Patterns and Scaling for the Fracture of Disordered Media. Elsevier Applied Science Publishers (North Holland).Google Scholar
  24. Hrennikoff, A. (1941). Solutions of problems of elasticity by the framework method. Journal of Applied Mechanics A169 - A173.Google Scholar
  25. Hillerborg, A. (1989). Stability problems in fracture mechanics testing. In Shah, S.P., Swartz, S.E., and Barr, B.I.G., eds. Fracture of Concrete and Rock–Recent Developments, London/New York: Elsevier. 369–378.Google Scholar
  26. Hillerborg, A., Modeer, M., and Petersson, P.E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Research 6: 773–781.CrossRefGoogle Scholar
  27. Hordijk, D.A. (1991). Local Approach to Fatigue of Concrete, Ph.D Dissertation, Delft University of Technology, Delft, The Netherlands.Google Scholar
  28. Jamet, P., Millard, A. and Nahas, G. (1984). Triaxial behaviour of a micro-concrete complete stress-strain curves for confining pressures ranging from 0 to 100 MPa, In Proceedings RILEM-CEB Symposium on Concrete under Multiaxial Conditions. 133–140.Google Scholar
  29. Krajcinovic, D. (1997). Essential structure of the damage mechanics theories. In Tatsumi T., Watanabe E. and Kambe T., eds., Theoretical and Applied Mechancis 1996, Proceedings 19 th ICTAM, Amsterdam: Elsevier Science. 411–426.Google Scholar
  30. Kupfer, H. (1973). Das Verhalten des Betons unter Mehrachsiger Kurzzeitbelastung unter besonderer Berücksichtigung der zweiachsiger Beanspruchung, Deutscher Ausshuss fir Stahlbeton, Heft 229, Berlin, (in German).Google Scholar
  31. Landis, E.N. and Nagy, E.N. (1998). Work of load versus internal crack growth for mortar in compression. In Proceedings FraMCoS-3 ‘Fracture Mechanics of Concrete Structures’, Freiburg: AEDIFICATIO Publishers. 35–46.Google Scholar
  32. Leung, C.K.Y., Elvin, N., Olson, N., Morse, T.F. and He, Y.-F. (1998). A novel distributed crack sensor for concrete structures, In Proceedings FraMCoS-3 ‘Fracture Mechanics of Concrete Structures’, Freiburg: AEDIFICATIO Publishers. 25–34.Google Scholar
  33. Linsbauer H.N. and Tschegg, E.K. (1986). Fracture energy determination of concrete with cube shaped specimens. Zement und Beton 31: 38–40.Google Scholar
  34. Maji, A.K. and Shah, S.P., (1991). Laser interferometry methods, In Shah, S.P. and Carpinteri, A., eds., Fracture Mechanics Test Methods for Concrete, London/ New York: Chapman and Hall. Chap. 6.Google Scholar
  35. Mazars, J. (1984). Application de la Mécanique de l’Endommagement au Comportement Non Linéaire et à la Rupture du Béton de Structure, Ph.D Dissertation, Université Paris VI, France.Google Scholar
  36. Mazars, J. and Pijaudier-Cabot, G. (1989). Continuum damage theory- Application to concrete, Journal of Engineering Mechanics (ASCE) 115: 345–365.CrossRefGoogle Scholar
  37. Mazars, J. and Pijaudier-Cabot, G. (1994). Damage localisation analysed as a crack propagation? In Ba±ant Z.P., Jir3sek, M. and Mazars J., eds., Fracture and Damage in Quasibrittle Structures, London: EandFN Spon. 144–157.Google Scholar
  38. Nemati, K.M. (1994). Generation and Interaction of Compressive Stress-Induced Microcracks in Concrete, Ph.D Dissertation, University of California, Berkeley, USA.Google Scholar
  39. Newman, J.B. (1979). Concrete under complex stress. In Lydon F.D., ed., Developments in Concrete Technology -1, London: Applied Science Publishers. 151–220.Google Scholar
  40. Ohtsu, M. (1988). Source inversion of acoustic emission waveform. Proceedings JSCE 398/I-10: 71–82.Google Scholar
  41. Olivier, J.P. (1985). A Nondestructive Procedure to Observe the Microcracks of Concrete by Scanning Electron Microscopy. Cement and Concrete Research 15: 1055–1064.CrossRefGoogle Scholar
  42. Otsuka, K., Date, H. and Kurita, T. (1998). Fracture process zone in concrete tension specimens by X-ray and AE techniques, In Proceedings FraMCoS-3 ‘Fracture Mechanics of Concrete Structures’, Freiburg: AEDIFICATIO Publishers. 3–16.Google Scholar
  43. Peerlings, R.H.J. (1999). Enhanced Damage Modelling for Fracture and Fatigue, Ph.D Dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands.Google Scholar
  44. Reinhardt, H.W. (1984). Softening of an elastic softening material like concrete. HERON 29: 5–42.Google Scholar
  45. RILEM-TC 50FMA (1985). Determination of the fracture energy of mortar and concrete by means of three-point-bend tests on notched beams (draft test recommendation). Materials and Structures (RILEM) 18: 287–290.CrossRefGoogle Scholar
  46. Roelfstra, P.E., Sadouki, H. and Wittmann, F.H. (1985). Le Béton Numérique. Materials and Structures (RILEM) 18: 327–335.CrossRefGoogle Scholar
  47. Saonma, V.E., Barton, C.C. and Gamaleldin, N.A. (1990). Fractal characterization of fracture surfaces in concrete. Engineering Fracture Mechanics 35: 47–53.CrossRefGoogle Scholar
  48. Schlangen, E. (1993). Experimental and Numerical Analysis of Fracture Processes in Concrete, Ph.D Dissertation, Delft University of Technology, Delft, The Netherlands.Google Scholar
  49. Schlangen, E., (1995). Computational aspects of fracture simulations with lattice models. In Fracture Mechanics of Concrete Structures (Proc. FraMCoS-2), Freiburg: AEDIFICATIO Publishers. 913–928.Google Scholar
  50. Schlangen, E. and Van Mier, J.G.M. (1992). Experimental and numerical analysis of micromechanisms of fracture of cement-based composites. Cement and Concrete Composites, 14: 105–118.CrossRefGoogle Scholar
  51. Schlangen, E. and Van Mier, J.G.M. (1994). Fracture simulations in concrete and rock using a random lattice. In Siriwardane, H.J. and Zaman, M.M., eds., Computer Methods and Advances in Geomechanics (Proceedings LACMAG-8), Rotterdam: Balkema. 1641–1646.Google Scholar
  52. Schlangen, E. and Garboczi, E.J. (1997). Fracture simulations of concrete using lattice models: Computational aspects. Engineering Fracture Mechanics 57: 319–332.CrossRefGoogle Scholar
  53. Scrivener, K.L. (1989). The Microstructure of Concrete. In Skalny. J., ed., Materials Science of Concrete I, Westerville (OH): The American Ceramic Society. 127–161.Google Scholar
  54. Torrenti, J.M., Desrues, J., Benaija, E.H. and Boulay, C. (1991). Stereophotogrammetry and localization in concrete under compression. Journal of Engineering Mechanics (ASCE) 117: 1455–1468.CrossRefGoogle Scholar
  55. Van der Giessen, E (1999). Micromechanics, Lecture notes PPM/PAO course `Cement-based Composites for the Building Industry’, Noordwijkerhout, January 18–22, 1999, PAO, Delft.Google Scholar
  56. Van der Zwaag, S. (1997). Design of new construction materials. De Constructeur, July/ August: 32–38 (in Dutch).Google Scholar
  57. Van Geel, H.J.G.M. (1998). Concrete Behaviour in Multiaxial Compression. Ph.D. Dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands.Google Scholar
  58. Van Mier, J.G.M. (1984). Strain-Softening of Concrete under Multiaxial Loading Conditions, Ph.D Dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands.Google Scholar
  59. Van Mier, J.G.M. (1986). Fracture of concrete under complex stress. HERON 31: 1–90.Google Scholar
  60. Van Mier, J.G.M. (1990). Fracture process zone in concrete: A three-dimensional growth process, In Firrao, D., ed., Proceedings ECF8 `Fracture Behaviour and Design of Materials and Structures’, Warley (UK): EMAS Publishers. 567–572.Google Scholar
  61. Van Mier, J.G.M. (1991a). Mode I fracture of concrete: Discontinuous crack growth and crack interface grain bridging. Cement and Concrete Research 21: 1–16.CrossRefADSGoogle Scholar
  62. Van Mier, J.G.M. (199 lb). Crack face bridging in normal, high strength and lytag concrete, In Van Mier J.G.M., Rots J.G., and Bakker A., eds., Fracture Processes in Concrete, Rock and Ceramic. London/New York: EandFN Spon. 27–40.Google Scholar
  63. Van Mier, J.G.M. (1997). Fracture Processes in Concrete. Boca Raton ( FL ): CRC Press.Google Scholar
  64. Van Mier, J.G.M. and Nooru-Mohamed, M.B. (1990), Geometrical and structural aspects of concrete fracture. Engineering Fracture Mechanics 35: 617–628.CrossRefGoogle Scholar
  65. Van Mier, J.G.M. and Schlangen, E. (1989). On the stability of softening systems. In Shah, S.P., Swartz, S.E., and Barr, B.I.G., eds. Fracture of Concrete and Rock–Recent Developments. London/New York: Elsevier. 387–396.Google Scholar
  66. Van Mier, J.G.M. and Van Vliet, M.R.A. (1999), Experimentation, numerical simulation and the role of engineering judgement in the fracture mechanics of concrete and concrete structures, Construction and Building Materials 13: 3–14.CrossRefGoogle Scholar
  67. Van Mier, J.G.M., Schlangen, A. and Vervuurt, A (1995). Lattice type fracture models for concrete. In Mahlhaus, H.-B. ed., Continuum Models for Materials with Microstructure. Chichester: Wiley. 341–377.Google Scholar
  68. Van Mier, J.G.M., Vervuurt, A. and Van Vliet, M.R.A. (1999). Materials engineering of cement-based composites using lattice type models. In Carpinteri, A. and Aliabadi, M.H. eds., Computational Fracture Mechanics in Concrete Technology. Southampton: WIT Press/Computational Mechanics Publications. 1–32.Google Scholar
  69. Van Vliet, M.R.A. (2000). Size Effects of Concrete and Rock under Uniaxial Tension, Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands (in preparation).Google Scholar
  70. Van Vliet, M.R.A. and Van Mier, J.G.M. (1999). Effect of strain gradients on the size effect of concrete in uniaxial tension. International Journal of Fracture 95: 195–219.CrossRefGoogle Scholar
  71. Vervuurt, A. (1997). Interface Fracture in Concrete, Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands.Google Scholar
  72. Visser, J.H.M. (1998). Extensile Hydraulic Fracturing of (Saturated) Porous Media, Ph.D Dissertation, Delft University of Technology, Delft, The Netherlands.Google Scholar
  73. Vonk, R.A., (1992). Softening of Concrete Loaded in Compression, Ph.D Dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands.Google Scholar
  74. Wang, J. (1994). Development and Application of a Micro-Mechanics Based Numerical Approach for the Study of Crack Propagation in Concrete, Ph.D. Dissertation, EPFL, Lausanne, Switzerland.Google Scholar
  75. Weibull, W. (1939). A statistical theory of the strength of materials. Royal Swedish Academy of Eng. Sci. Proc. 151: 1–45.Google Scholar
  76. Zheng, Z., Cook, N.G.W. and Myer, L.R. (1989). Stress induced microcrack geometry in unconfined and confined axial compressive tests, in Khair, A., ed., Rock Mechanics as a Guide for Efficient Utilization of Natural Resources. Rotterdam: Balkema. 749–758.Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • J. van Mier
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations