Advertisement

Molecular and Particle Simulations

  • D. Krajcinovic
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 410)

Abstract

The objective of this Chapter is to demonstrate the potential role of computer simulations in induction of the mode of irreversible change of material and formulation of continuum models of damage mechanics. An example of molecular simulation and two particle simulations are selected to illustrate this objective.

Keywords

Shear Band Damage Evolution Particle Simulation Deborah Number Fault Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M.P. and Tildesley, D.J. (1994). Computer Simulations of Liquids. Oxford, UK: Clarendom Press.Google Scholar
  2. Anderson, P.W. (1958). Absence of diffusion in certain random lattices. Physics Review 109: 1492–1505.CrossRefADSGoogle Scholar
  3. Bigoni, D. and Hueckel, T. (1991). Uniqueness and localization–associative and non-associative elastoplasticity. International Journal of Solids and Structures 28: 197–213.MathSciNetCrossRefMATHGoogle Scholar
  4. Bishop, R. F., Hill, R. and Mott, N. F. (1948). The theory of indentation and hardness tests. The Proceedings of the Physical Society 57: 147–159.CrossRefADSGoogle Scholar
  5. Brar, N.S, Bless, S.J. and Rosenberg, Z. (1991). Impact-induced failure waves in glass bars and plates. Applied Physics Letters 59 (26): 3396–8.CrossRefADSGoogle Scholar
  6. Chhabildas, L.C. and Grady, D.E. (1983). Shock loading behaviour of fused quartz. In Asay, J.R., Graham, R.A. and Straub, G.K., eds., Shock Waves in Condensed Materials 4: 1758–1762.Google Scholar
  7. Curtin, W. A. and Scher, H. (1990). Brittle fracture in disordered materials: a spring network model. Journal of Materials Research 4: 535–553.CrossRefADSGoogle Scholar
  8. Delaplace, A., Pijaudier-Cabot, G. and Roux, S. (1996). Progressive damage in discrete models and consequence on continuum modeling. Journal of the Mechanics and Physics of Solids 44: 99–136.MathSciNetCrossRefMATHADSGoogle Scholar
  9. Florence, A. L., Gefken, P. R., Seaman, L., Curran, D. R. and Shockey, D. A. (1992). Computational models for armor penetration. Technical Report, SRI International.Google Scholar
  10. Forrestal, M. J. (1986). Penetration into dry porous rock. International Journal of Solids and Structures 22: 1485–1500.CrossRefMATHGoogle Scholar
  11. Forrestal, M. J. and Luk, V. K. (1992). Penetration into soil targets. International Journal of Impact Engineering 12: 427–444.CrossRefGoogle Scholar
  12. Forrestal, M. J., Frew, D. J., Hanchak, S. J. and Brar, N. S. (1996). Penetration of grout and concrete targets with ogive-nose steel projectiles. International Journal of Impact Engineering 18: 465–476.CrossRefGoogle Scholar
  13. Forrestal, M.J. and Tzou, D.Y. (1997). A spherical cavity-extention penetration model for concrete targets. International Journal of Solids and Structures 34: 4127–4146.CrossRefMATHGoogle Scholar
  14. Grady, D.E. (1995). Dynamic Properties of Ceramic Materials. Sandia Report, SAND94–3266, UC-704.Google Scholar
  15. Greenspan, D. (1997). Particle Modeling. Boston MA: Birkhauser.CrossRefMATHGoogle Scholar
  16. Hallbauer, D.K., Wagner, H. and Cook, N.G.W. (1976). Some observations concerning the microscopic and mechanical behavior of quartzite specimens in stiff, triaxial compression tests. International Journal of Rock Mechanics and Mineral Science & Geomechanical Abstracts 10: 713–726.CrossRefGoogle Scholar
  17. Hansen, A., Hinrichsen, E.L. and Roux, S. (1991). Scale-invariant disorder in fracture and related breakdown phenomena. Physics Review B 43: 665–678.CrossRefADSGoogle Scholar
  18. Hansen, A., Roux, S. and Herrmann, H.J. (1989). Rupture of central-force lattices, Journal de Physique France 50: 733–744.CrossRefGoogle Scholar
  19. Hill, R. (1950). The Mathematical Theory of Plasticity. Oxford, UK: Clarendon Press.MATHGoogle Scholar
  20. Hopkins, H. G. (1960). Dynamic expansion of spherical cavities in metals. In Sneddon, I. N. and Hill, R., eds., Progress in Solid Mechanics, 1. Amsterdam: North-Holland. 83–163.Google Scholar
  21. Jenkins, J.T. (1988), Volume changes in small strain axisymmetric deformations of a granular material. In Jenkins, ed., Micromechanics of Granular Material, Amsterdam: Elsevier. 245–252.Google Scholar
  22. Kanel, G.l., Rasorenov, S.V. and Fortov, V.E. (1992). The failure waves and spallation in homo-geneous brittle material. In Schmidt, S.C. Dick, R.D., Forbes, J.W. and Tasker D.G., eds., Shock Compression of Condensed Matter. Amsterdam: Elsevier. 451–454.Google Scholar
  23. Kendall, K. (1978). On Impossibility of Comminuting Small Particles by Compression, Nature 272: 710–711.CrossRefADSGoogle Scholar
  24. Kestin, J. (1992). Local-equilibrium formalism applied to mechanics of solids. International Journal of Solids and Structures 29: 1827–1836.CrossRefMATHGoogle Scholar
  25. Krajcinovic, D. (1996). Damage Mechanics. Amsterdam: North-Holland, Elsevier.Google Scholar
  26. Krajcinovic, D. and Basista, M. (1991). Rupture of central-force lattices revisited. Journal of Physics I (France) 1: 241–245.CrossRefGoogle Scholar
  27. Krajcinovic, D. and Mastilovic, S. (1999). Statistical models of brittle deformation, Part I: introduction, International Journal of Plasticity 15: 401–426.CrossRefMATHGoogle Scholar
  28. Krajcinovic, D. and Vujosevic, M. (1998). Strain localization — short to long correlation length transition. International Journal of Solids and Structures 35: 4147–4166.CrossRefMATHGoogle Scholar
  29. Kromm, A. (1948). Zur ausbreitung von stosswellen in kreislochscheiben. ZAMM 28 (4): 104–114, 297–303.MathSciNetGoogle Scholar
  30. Lockner, D.A. and Byerlee, J.D. (1992). Fault growth and acoustic emissions in confined granite. In Applied Review 45 (3) Proceedings of 22nd Midwestern Mechanics Conference, S165–173.Google Scholar
  31. Lockner, D.A., Byerlee, J.D., Kuksenko, V., Ponomarev, A. and Sidorin, A. (1991). Quasi-static fault growth and shear fracture energy in granite. Nature 350 (6313): 39–42.CrossRefADSGoogle Scholar
  32. Mastilovic, S. and Krajcinovic, D. (1999). High-velocity expansion of a cavity within a brittle material. Journal of the Mechanics and Physics of Solids 47: 577–610.CrossRefMATHADSGoogle Scholar
  33. Mastilovic, S. and Krajcinovic, D. (1999a). Statistical models of brittle deformation: part II: computer simulations, International Journal of Plasticity 15: 427–456.CrossRefGoogle Scholar
  34. Mastilovic, S. and Krajcinovic, D. (in press). Penetration of rigid projectiles through quasi-brittle materials. Journal of Applied Mechanics. Google Scholar
  35. Monette, L. and Anderson, M. P. (1994). Elastic and fracture properties of the two-dimensional triangular and square lattices. Modelling and Simulation in Materials Science and Engineering 2: 53–66.CrossRefADSGoogle Scholar
  36. Mura, T. (1982). Micromechnics of Defects in Solids. The Hague: M. Nijhoff Publisher.CrossRefGoogle Scholar
  37. Neilsen, M.K. and Schreyer, H.L. (1993). Bifurcation in elastic-plastic material. International Journal of Solids and Structures 30: 521–544.CrossRefMATHGoogle Scholar
  38. Nose, S. and Yonezawa, F. (1986). Isothermal-isobaric computer simulation of melting and crystallization of a Lennard-Jones System, Journal of Chemical Physics 84 (3): 1803–1814.CrossRefADSGoogle Scholar
  39. Ortiz, M. (1996), Computational micromechanics, Computational Mechanics 18: 321–338.MathSciNetCrossRefMATHADSGoogle Scholar
  40. Ottosen, N.S. and Runesson, K. (1991). Properties of discontinuous bifurcation solutions in elasto-plasticity. International Journal of Solids and Structures 27: 153–172.MathSciNetCrossRefGoogle Scholar
  41. Paterson, M. S. (1978). Experimental Rock Deformation — The Brittle Field. Berlin: Springer.CrossRefMATHGoogle Scholar
  42. Phillips R. (1995). The modeling of interfaces: atoms or continua? Journal of Metals 37–42.Google Scholar
  43. Raiser, G.F., Wise, J.L., Clifton, R.J., Grady, D.E., and Cox, D.E. (1994). Plate impact response of ceramics and glasses. Journal of Applied Physics 75 (8): 3862–9.CrossRefADSGoogle Scholar
  44. Reches, Z. and Lockner, D.A. (1994). Nucleation and growth of faults in brittle rock. Journal of Geophysical Researche 99 No. B9: 18159–18173.Google Scholar
  45. Rice, J.R. (1976). The localization of plastic deformation. In: Koiter, W.T., ed., Theoretical and Applied Mechanics, Amsterdam: North-Holland. 207–220.Google Scholar
  46. Rudnicki, J.W. and Rice, J.R. (1975). Conditions for the localization of deformation in pressure-sensitive materials. Journal of the Mechanics of Physics of Solids 23: 371–394.CrossRefADSGoogle Scholar
  47. Sahimi, M. (1994). Applications of Percolation Theory, Bristol, PA: Taylor & Francis, Inc. Sieradzki, K., Knap, J. and Krajcinovic, D. unpublished study.Google Scholar
  48. Strassburger, E. and Senf, H. (1995). Experimental Investigations of Wave and Fracture Phenomena in Impacted Ceramics and Glasses. ARL-CR-214, Ernst-Mach-Institute, Weil am Rhein.Google Scholar
  49. Van Mier, J. G. M. (1997). Fracture Processes of Concrete. New York: CRC Press.Google Scholar
  50. van Mier, J.G.M. (1984). Strain-Softening under Multiaxial Loading Conditions. Ph.D. Thesis, Tech. Hogeschool Eindhoven, The Netherlands.Google Scholar
  51. Vitek, V. (1996). Pair potential in atomistic computer simulations. In Interatomic Potentials for Atomistic Simulations, MRS Bulletin 21: 20–23.Google Scholar
  52. Vujosevic, M. and Krajcinovic, D., (1997), Creep rupture of polymers: a statistical model. International Journal of Solids and Structure 34: 1105–1122.CrossRefMATHGoogle Scholar
  53. Wackerle, J. (1962). Shock-wave compression of quartz. Journal of Applied Physics 33: 92 2937.Google Scholar
  54. Weiner, J. H. (1983). Statistical Mechanics of Elasticity. New York: John Wiley & Sons.MATHGoogle Scholar
  55. Wu, F.H. and Freund, L.B., (1984), Deformation Trapping due to Thermoplastic Instability in One-Dimensional Wave Propagation, J. Mech. Phys. Solids, Vol. 32, pp. 119–132.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • D. Krajcinovic
    • 1
  1. 1.Arizona State UniversityTempeUSA

Personalised recommendations