Romansy 13 pp 489-499 | Cite as

Functional Biomechanics of Human Grasping and Requirements for Simple Robotic End-Effectors

  • Robert B. Addis
  • Bahram Ravani
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 422)


This paper explores functional biomechanics of human grasping with the aim of developing requirements for simple robotic end effectors. It uses a biomechanical evaluation to determine the degrees of freedom of the hand and enumerate all kinematically possible grasps. All grasps are then grouped into five grasp categories based on the type of oppositions formed between hand’s elements. This is then used for developing the requirements for robot end effectors that can replace the hand’s functions.


Interphalangeal Joint Metacarpophalangeal Joint Carpometacarpal Joint Palmar Surface Phalangeal Joint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addis, Robert B., (1998). Development and Application of a Human Grasp Taxonomy to Specify The Robotic End Effector Design for the LLNL DOR Process, M.S. Thesis, University of California-Davis, p. 209.Google Scholar
  2. Blechschmidt, J.L. and Fessier, M.J. (1991). Motion comparision of the ASU finger and the human finger. Dept. of Mech. Engr. and Aero. Engr., Arizona State University.Google Scholar
  3. Capener, N. (1956). The hand in surgery. Journal of Bone and Joint Surgery 38B: 128.Google Scholar
  4. Crossley, F.P.E. and Umholtz, F.G. (1977). Design for Three-Fingered Hand. Mechanism and Machine Theory 12: 855–93.Google Scholar
  5. Cutkosky, M.R. (1989). On grasp choice, grasp models and the design of hands for manufacturing tasks. IEEE Transactions on Robotics and Automation 5 (3): 269–279.CrossRefMathSciNetGoogle Scholar
  6. Cutkosky, M.R. and Wright, P.K. (1986b). Modeling Manufacturing Grips and Correlation with the Design of Robotic Hands. Proceedings of the 1986 IEEE Int’l Conference on Robotics and Automation, Washington DC: IEEE Computer Society Press, pp. 1533–1539.Google Scholar
  7. Dubousset, J. (1971). Anatomie fonctionnelle de l’appareil capsulo-ligamentaire des articulations des doigts. In, R. Vilain (eds.), Traumatismes Ostéo-Articulaires de la Main. Paris: L’Expansion.Google Scholar
  8. Iberall, T. (1997). Human Prehension and Dexterous Robot Hands. The International Journal of Robotics Research 16 (3): 285–299.CrossRefGoogle Scholar
  9. Jacobsen, S.C., Wood, J.E., Knutti, D.F., Giggers, K.B. (1986). The Utah/MIT Dexterous Hand: Work In Progress. In, D.T. Pham and W.B. Heginbotham, International Trends in Manufacturing Technology, Robot Grippers. UK: IFS Ltd, pp. 341–389.Google Scholar
  10. Kuczynski, K. (1968). The upper limb. In, R. Passmore and J.S. Robson (eds), A Companion to Medical Studies, Vol. 1. New York: Blackwell Scientific Publications.Google Scholar
  11. Littler. J.W. (1960). The physiology and dynamic function of the hand. Surgery Clin. North Am. 40: 259.Google Scholar
  12. Loucks, C. S., Johnson, V.J., Boisiere, P.T., Starr, G.P., and Steele, J.P.H. (1987). Modeling and controll of the Stanford/JPL hand. Proceedings of the 1987 IEEE International Conference on Robotics and Automation, Raleigh, North Carolina. pp. 573–578.Google Scholar
  13. MacKenzie, C.L., and Iberall, T. (1994). The Grasping Hand. Amsterdam: North-Holland.Google Scholar
  14. Malek, R. (1981). Prehension and gesture: Ch 45 The grip and its modalities. In, R. Tubiana (ed.), The Hand, Vol 1. Philidelphia: W.B. Saunders, pp. 469–476.Google Scholar
  15. McBride, E.D. 1942. Disability Evaluation, 3rd ed. Philidelphia, PA: J.B. Lippincott.Google Scholar
  16. McCammon, I.D., and Jacobsen, S.C. (1990). Tactile sensing and control for the Utah/MIT hand. In, S.T. Venkataraman and T. Iberall (eds.), Dexterous Robot Hands. New York: Springer-Verlag, pp. 239–266.Google Scholar
  17. Napier, J.R. (1956). The Prehensile Movments of the Human Hand. Journal of Bone and Joint Surgery 38B (4): 902–913.Google Scholar
  18. Okada, T. (1979). Computer control of multi jointed finger system. In, 6th Intrnational Joint Conference on Artificial Intelligence,Tokyo.Google Scholar
  19. Patterson, P. E. and Katz, J. A. (1992). Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand. Journal of Rehabilitation Research and Development 29 (1): 1–8.CrossRefGoogle Scholar
  20. Salisbury, K. (1986). Teleoperator Hand Design Issues. Proceedings IEEE International Conference on Robotics and Automation, San Francisco, CA. 3: 1355–1360.Google Scholar
  21. Salisbury, K., Brock, D. and O’Donnell, P. (1989). Using an articulated hand to manipulate objects. In, M. Brady (eds.), Robotic Science. Cambridge, Mass.: MIT Press, pp. 540–562.Google Scholar
  22. Salisbury, K. J. and Craig, J. J. (1982). Articulated hands: Force control and kinematics issues. International Journal of Robotics Research 1 (1): 4–17.CrossRefGoogle Scholar
  23. Schlesinger, G. (1919). Der Mechanische Aufbau der Kunstlischen Glieder (the Mechanical Structure of Artificial Limbs). In, M. Borchardt, et al. (eds.), Ersatzglieder und Arbeitshilfen fur Kriegsbeschadigte und Unfallverletzte. Berlin: Springer, pp. 321–699.Google Scholar
  24. Scott, R. N. 1990. Feedback in myoelectric prostheses. Clinical Orthopaedics and Related Research 7 (256): 58–63.Google Scholar
  25. Taylor, C.L. (1948). Patterns of hand prehension in common activities. Engineering Prosthetics Research, Special Technical Report 3. Los Angeles, CA: University of California, Department of Engineering.Google Scholar
  26. Taylor, C.L. and Schwarz, R.J. (1955). The Anatomy and Mechanics of the Human Hand. Artificial Limbs 2: 22–35.Google Scholar
  27. Tubiana, R., (1981). Section 1: Functional anatomy; chapter 4, architecture and functions of the hand. In, R. Tubiana (eds.), The Hand, Vol. 1. Philidelphia: W. B. Saunders Co. pp. 19–93.Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • Robert B. Addis
  • Bahram Ravani
    • 1
  1. 1.Department of Mechanical and Aeronautical EngineeringUniversity of California-DavisDavisUSA

Personalised recommendations