Advertisement

Finite Elements for Thermomechanical Contact and Adaptive Finite Elemnt Analysis of Contact Problems

  • P. Wriggers
Part of the International Centre for Mechanical Sciences book series (CISM, volume 384)

Abstract

This contribution is split into two parts. The first is concerned with thermomechani-cal contact its continuous formulation, discretization and algorithmic treatment. The second part is associated with adaptive finite element methods for contact problems which yield accurate and thus reliable solutions within a prescribed error tolerance. To be most general we will derive a geometrical model for contact which is valid for large deformations. Furthermore interface laws will be discussed for the normal and tangential stress components in the contact area. Different variational formulations can be applied to treat the variational inequalities due to contact. Of these different techniques, the penalty method will be presented especially. Furthermore the discretization of a contact problem in time and space is of great importance and has to be chosen with regard to the nature of the contact problem.

To control the error of the numerical solution of contact problems adaptive finite element methods have to be constructed. For this purpose error estimators or indicators have to be developed and implemented. Furthermore a strategy for the refinement of finite element meshes and the associated transfer of history variables has to be developed. Numerical examples then show the application of the adaptive strategy to contact problems.

Keywords

Variational Inequality Constitutive Equation Contact Problem Error Estimator Contact Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agelet de Saracibar, C, Chiumenti, M. (1998) Numerical Analysis of Frictional Wear Contact Problems, Computational Model and Applications, to appear in Comp. Meth. Appl. Mech. Engng..Google Scholar
  2. Alart, P., Curnier, A. (1991) A Mixed Formulation for Frictional Contact Problems prone to Newton like Solution Methods, Comp. Meth. Appl. Mech. Engng., 92, 353–375.MATHMathSciNetGoogle Scholar
  3. Argyris, J. H., Doltsinis, J. S. (1981), On the Natural Formulation and Analysis of Large Deformation Coupled Thermomechanical Problems, Comp. Meth. Appl. Mech. Engng., 25, 195–253.MATHMathSciNetGoogle Scholar
  4. Babuska, I. and Rheinboldt, W. (1978) Error Estimates for Adaptive Finite Element Computations, J. Num. Analysis, 15, 736–754.MATHMathSciNetGoogle Scholar
  5. Babuska, I. and Miller, A. (1987) A feedback finite element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimation, Comp. Meth. Appl. Mech. Engrg., 61, 1–40.ADSMATHMathSciNetGoogle Scholar
  6. Babuska, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., Copps, K. (1994) Validation of A Posteriori Error Estimators by Numerical Approach, Int. J. Num. Meth. Engng., 37, 1073–1123.MATHMathSciNetGoogle Scholar
  7. Barthold, F. J., Bischoff, D. (1988) Generalization of Newton type Methods to Contact Problems with Friction, J. Mec. Theor. Appl., Special Issue: Numerical Methods in Mechanics of Contact Involving Friction, 97–110.Google Scholar
  8. Bathe, K. J., Chaudhary, A. B. (1985) A Solution Method for Planar and Axisymmetric Contact Problems, Int. J. Num. Meth. Engng., 21, 65–88.MATHGoogle Scholar
  9. Bazaraa, M. S., Sherali, H. D., Shetty, C. M. (1993) Nonlinear Programming, Theory and Algorithms, J. Wiley, New York.MATHGoogle Scholar
  10. Becker, R., Rannacher, R. (1996) A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples, EAST-WEST J. Numer. Math.4, 237–264.MATHMathSciNetGoogle Scholar
  11. Belytschko, T., Neal, M. O. (1991) Contact-Impact by the Pinball Algorithm with Penalty and Lagrangian Methods, Int. J. Num. Meth. Engng., 31, 547–572.MATHGoogle Scholar
  12. Bertsekas, D. P. (1984) Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York.Google Scholar
  13. Björkman, G., Klarbring, A., Sjödin, B., Larsson, T., Rönnqvist, M. (1995) Sequential Quadratic Programming for Non-Linear Elastic Contact Problems, Int. J. Num. Meth. Engng., 38, 137–165.MATHGoogle Scholar
  14. Bowden, F.P., Tabor, D. (1964) The Friction and Lubrication of Solids, Part II, Clarendon Press, Oxford.Google Scholar
  15. Campos, L. T., Oden, J. T., Kikuchi, N. (1982) A Numerical Analysis of a Class of Contact Problems with Friction in Elastostatics, Comp. Meth. Appl. Mech. Engng., 34, 821–845.ADSMATHMathSciNetGoogle Scholar
  16. Chan, S. H., Tuba, L S. (1971) A Finite Element Method for Contact Problems in Solid Bodies, Int. J. Mech. Sci, 13, 615–639.MATHGoogle Scholar
  17. Chaudhary, A. B., Bathe, K. J. (1986) A Solution Method for Static and Dynamic Analysis of Three-Dimensional Contact Problems with Friction, Computer & Structures, 24, 137–147.Google Scholar
  18. Conry, T. F., Seireg, A. (1971) A Mathematical Programming Method for Design of Elastic Bodies in Contact, J. Appl. Mech., 38, 1293–1307.Google Scholar
  19. Ciarlet, P. G. (1988) Mathematical Elasticity, North Holland, Amsterdam.MATHGoogle Scholar
  20. Cooper, M. G., Mikic, B. B., Yovanovich, M. M. (1969) Thermal Contact Conductance., Int. J. of Heat and Mass Transfer, 12, 279–300.Google Scholar
  21. Curnier, A. (1984) A Theory of Friction, Int. J. Solids Structures, 20, 637–647.MATHGoogle Scholar
  22. Curnier, A., Alart, P. (1988) A Generalized Newton Method for Contact Problems with Friction, J. Mec. Theor. Appl., Special Issue: Numerical Methods in Mechanics of Contact Involving Friction, 67–82.Google Scholar
  23. Curnier, A., He, Q. C, Telega, J. J. (1992) Formulation of Unilateral Contact between two Elastic Bodies undergoing Finite Deformation, C. R. Acad. Sei. Paris, 314, 1–6.MATHGoogle Scholar
  24. Curnier, A., He, Q. C, Klarbring, A. (1995) Continuum Mechanics Modelling of Large Deformation Contact with Friction, in Contact Mechanics, eds. M. Raous, M. Jean and J.J. Moreau, Plenum Press, New York, 1995.Google Scholar
  25. Doltsinis, I. S. (1990), Aspects of Modelling and Computation in the Analysis of Metal Forming, Engineering Computations, 7, 2–20.Google Scholar
  26. Duvaut, G., Lions, J. L. (1976) Inequalities in Mechanics and Physics, Springer-Verlag, Berlin.MATHGoogle Scholar
  27. Eterovic, A. L., Bathe, K. J. (1991) An Interface Interpolation Scheme for Quadratic Convergence in the Finite Element Analysis of Contact Problems, in Computational Methods in Nonlinear Mechanics, eds. P. Wriggers, W. Wagner, Springer, Berlin.Google Scholar
  28. Francavilla, A., Zienkiewicz, O. C. (1975) A Note on Numerical Computation of Elastic Contact Problems, Int. J. Num. Meth. Engng., 9, 913–924.Google Scholar
  29. Fredriksson, B. (1976) Finite Element Solution od Surface Nonlinearities in Structural Mechanics with Special Emphasis to Contact and Fracture Mechanics Problems, Computer & Structures, 6, 281–290.MATHGoogle Scholar
  30. Giannokopoulos, A. E. (1989) The Return Mapping Method for the Integration of Friction Constitutive Relations, Computers & Structures, 32, 157–168.Google Scholar
  31. Glowinski, R., Le Tallec, P. (1984) Finite Element Analysis in Nonlinear Incompressible Elasticity, in Finite Element, Vol. V: Special Problems in Solid Mechanics, eds. J. T. Oden and G. F. Carey, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  32. Hallquist, J. O., Goudreau, G. L., Benson, D. J. (1985) Sliding Interfaces with Contact-Impact in Large-Scale Lagrangian Computations, Comp. Meth. Appl. Mech. Engng., 51, 107–137.ADSMATHMathSciNetGoogle Scholar
  33. Hallquist, J. O., Schweizerhof, K., Stillman, D. (1992) Efficiency Refinements of Contact Strategies and Algorithms in Explicit FE Programming, in Proceedings of COMPILAS HI, eds. D.R.J. Owen, E. Hinton, E. E. Onate, Pineridge Press.Google Scholar
  34. Hansson, E., Klarbring, A. (1990) Rigid Contact Modelled by CAD Surface, Eng. Computations 7, 344–348.Google Scholar
  35. Heegaard, J.-H., Curnier, A. (1993) An Augmented Lagrangian Method for Discrete Large-Slip Contact Problems, Int. J. Num. Meth. Engng., 36, 569–593.MATHMathSciNetGoogle Scholar
  36. Hertz, H. (1882) Study on the Contact of Elastic Bodies, J. Reine Angew. Math., 29, 156–171.Google Scholar
  37. Hlavacek, I., Haslinger, J., Necas, J. and Lovisek, J. (1988) Solution of variational inequalities in mechanics, Springer, New York.MATHGoogle Scholar
  38. Hughes, T. R. J., Taylor, R. L., Sackman, J. L., Curnier, A., Kanoknukulchai, W. (1976) A Finite Element Method for a Class of Contact-Impact Problems, Comp. Meth. Appl. Mech. Engng., 8, 249–276.ADSMATHGoogle Scholar
  39. Hughes, T. R. J., Taylor, R. L., Kanoknukulchai, W. (1977) A Finite Element Method for Large Displacement Contact and Impact Problems, in Formulations and Computational Algorithms in FE Analysis, ed. K. J. Bathe, MIT-Press, Boston, 468–495.Google Scholar
  40. Johannson, L., Klarbring, A. (1993) Thermoelastic Frictional Contact Problems: Modelling, Finite Element Approximation and Numerical Realization, Comput. Meth. Appl. Mech. Engrg., 105, 181–210.ADSGoogle Scholar
  41. Johnson, C. (1987) Numerical solutions of partial differential equations by the finite element method, Cambridge Press, New York.Google Scholar
  42. Johnson, C. (1991) Adaptive finite element methods for the obstacle problem, Technical Report, Chalmers University of Technology, Göteborg.Google Scholar
  43. Johnson, C, Hansbo, P. (1992) Adaptive finite element methods in computational mechanics, Comput. Meth. Appl. Mech. Engrg., 101, 143–181.ADSMATHMathSciNetGoogle Scholar
  44. Ju, W., Taylor, R. L. (1988) A Perturbed Lagrangian Formulation for the Finite Element Solution of Nonlinear Frictional Contact Problems, Journal of Theoretical and Applied Mechanics, 7, 1–14.MATHGoogle Scholar
  45. Kennard, E. H. (1938) Kinetic Theory of Gases, Mc Graw-Hill, New York.Google Scholar
  46. Kikuchi, N. (1982) A Smoothing Technique for Reduced Integration Penalty Methods in Contact Problems, Int. J. Num. Meth. Engng., 18, 343–350.MATHMathSciNetGoogle Scholar
  47. Kikuchi, N., Oden, J. T. (1988) Contact Problems in Elasticity: A Study of Variational Inequalities and Finite element Methods, SIAM, Philadelphia.MATHGoogle Scholar
  48. Klarbring, A. (1986) A Mathematical Programming Approach to Three-dimensional Contact Problems with Friction, Comp. Meth. Appl. Mech. Engng., 58, 175–200.ADSMATHMathSciNetGoogle Scholar
  49. Klarbring, A., Björkman, G. (1992) Solution of Large Displacement Contact Problems with Friction using Newton’s Method for Generalized Equations, Int. J. Num. Meth. Engng., 34, 249–269.MATHGoogle Scholar
  50. Kragelsky, I. V. (1956) Die Entwicklung der Wissenschaft von der Reibung, Verlag der Akademie der Wissenschaften der UDSSR, Moskau.Google Scholar
  51. Kragelsky, L V., Dobychin, M. N., Kombalov, V. S. (1982) Friction and Wear — Calculation Methods, (Translated from The Russian by N. Standen), Pergamon Press.Google Scholar
  52. Laursen, T. A., Simo, J. C. (1991) On the Formulation and Numerical Treatment of Finite Deformation Frictional Contact Problems, in Computational Methods in Nonlinear Mechanics, eds. P. Wriggers, W. Wagner, Springer, Berlin.Google Scholar
  53. Laursen, T. A., Simo, J. C. (1993a) A Continuum-Based Finite Element Formulation for the Implicit Solution of Multibody, Large Deformation Frictional Contact Problems, Int. J. Num. Meth. Engng., 36, 3451–3485.MATHMathSciNetGoogle Scholar
  54. Laursen, T. A., Simo, J. C. (1993b) Algorithmic Symmetrization of Coulomb Frictional Problems using Augmented Lagrangians, Comp. Meth. Appl. Mech. Engng., 108, 133–146.ADSMATHMathSciNetGoogle Scholar
  55. Lee, C. Y., Oden, J. T. and Ainsworth, M. (1991) Local A Posteriori Error Estimates and Numerical Results for Contact Problems and Problems of Flow through Porous Media, in: Nonlinear Computational Mechanics, eds. P. Wriggers and W. Wagner, 671–689, Springer, Berlin.Google Scholar
  56. Luenberger, D. G. (1984) Linear and Nonlinear Programming. Addison-Wesley, Massachusetts.MATHGoogle Scholar
  57. Madhusudana, C. V. and Fletcher, L. S. (1981) Gas conductance contribution to contact heat transfer, AIAA Paper 81–1163.Google Scholar
  58. Michalowski, R., Mroz, Z. (1978) Associated and Non-associated Sliding Rules in Contact Friction Problems, Arch, of Mechanics, 30, 259–276.MATHGoogle Scholar
  59. Miehe, C. (1988) On the Numerical Treatment of Thermomechanical Processes (in German), Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, Report-No. F 88/6.Google Scholar
  60. Munjiza, A., Owen, D. R. J., Bicanic, N. (1995) A Combined Finite-Discrete Element Method in Transient Dynamics of Fracturing Solids. Eng. Computations 12, 145–174.MATHGoogle Scholar
  61. Nour-Omid, B., Wriggers, P. (1986) A Two-Level Iterative Method for the Solution of Contact Problems, Comp. Meth. Appl. Mech. Engng., 54, 131–144.ADSMATHMathSciNetGoogle Scholar
  62. Nour-Omid, B., Wriggers, P. (1987) A Note on the Optimum Choice for Penalty Parameters, Comm. Appl. Num. Meth, 3, 581–585.MATHGoogle Scholar
  63. Oden, J.T. (1981) Exterior Penalty Methods for Contact Problems in Elasticity, in Nonlinear Finite Element Analysis in Structural Mechanics, eds, W. Wunderlich, E. Stein, K. J. Bathe, Springer, Berlin.Google Scholar
  64. Oden, J.T., Martins, J.A.C. (1986) Models and Computational Methods for Dynamic Friction Phenomena, Comp. Meth. Appl. Mech. Engng., 52, 527–634.MathSciNetGoogle Scholar
  65. Oden, J. T., Pires, E. B. (1983a) Algorithms and Numerical Results for Finite Element Approximations of Contact Problems with Non-Classical Friction Laws, Computer & Structures, 19, 137–147.Google Scholar
  66. Oden, J. T., Pires, E. B. (1983b) Nonlocal and Nonlinear Friction Laws and Variational Priciples for Contact Problems in Elasticity, J. Appl. Mech., 50, 67–76.ADSMATHMathSciNetGoogle Scholar
  67. Ogden, R. W. (1984) Non-linear Elastic Deformations, Ellis Horwood Limited, Chichester, U.K.Google Scholar
  68. Ortiz, M., Quigley, J. J. IV (1991) Adaptive Mesh Refinement in Strain Localization Problems, Comp. Meth. Appl. Mech. Engng., 90, 781–804.Google Scholar
  69. Papadopoulos, P., Taylor, R. L. (1992) A Mixed Formulation for the Finite Element Solution of Contact Problems, Comp. Meth. Appl. Mech. Engng., 94, 373–389.ADSMATHGoogle Scholar
  70. Parisch, H. (1989) A Consistent Tangent Stiffness Matrix for Three-Dimensional Non-Linear Contact Analysis, Int. J. Num. Meth. Engng., 28, 1803–1812.MATHGoogle Scholar
  71. Rannacher, R., Suttmeier, F.T. (1999) A posteriori Error Control in Finite Element Methods via Duality Techniques: Application to Perfect Plasticity, Comp. Mech., to appear.Google Scholar
  72. Shai, I. and Santo, M. (1982) Heat transfer with contact resistance, Int. J. of Heat and Mass Transfer, 24, 465–470.Google Scholar
  73. Simo, J. C, Wriggers, P., Taylor, R. L. (1985) A Perturbed Lagrangian Formulation for the Finite Element Solution of Contact Problems, Comp. Meth. Appl. Mech. Engng.,50, 163–180.MATHMathSciNetGoogle Scholar
  74. Simo, J. C, Taylor, R. L. (1985) Consistent Tangent Operators for Rate-independant Elastoplasticity, Comp. Meth. Appl. Mech. Engng., 48, 101–118.ADSMATHGoogle Scholar
  75. Simo, J. C, Laursen, T. A. (1992) An Augmented Lagrangian Treatment of Contact Problems involving Friction, Computers & Structures, 42, 97–116.MATHMathSciNetGoogle Scholar
  76. Simo, J. C, Miehe, C. (1992) Associative Coupled Thermoplasticity at Finite Strains: Formulation, Numerical Analysis and Implementation, Comp. Meth. Appl. Mech. Engng., 98, 41–104.ADSMATHGoogle Scholar
  77. Sloan, S. W. (1987) A fast algorithm for constructing delaunay triangularization in the plane, Adv. Eng. Software, 9, 34–55.MATHGoogle Scholar
  78. Song, S., Yovanovich, M. M. (1987) Explicit Relative Contact Pressure Expression: Dependence upon Surface Roughness Parameters and Vickers Microhardness Coefficients., AIAA Paper 87–0152.Google Scholar
  79. Städter, J. T., Weiss, R. O. (1979) Analysis of Contact through Finite Element Gaps, Computers & Structures, 10, 867–873.Google Scholar
  80. Suttmeier, F. T. (1996) Adaptive Finite Element Approximations of Problems in Elasto-Plasticity Theory, Ph.-D Dissertation, Institut for Applied Mathematics, University of Heidelberg.Google Scholar
  81. Tabor, D. (1981) Friction — The Present State of Our Understanding, J. Lubr. Technology, 103, 169–179.Google Scholar
  82. Verführt, R. (1993) A Review of a posteriori error estimation and adaptive mesh-refinement techniques, Technical Report, Institut für Angewandte Mathematik, Universität Zürich.Google Scholar
  83. Woo, K. L., Thomas, T. R. (1980) Contact of Rough Surfaces : A Review of Experimental Works, Wear, 58, 331–340.Google Scholar
  84. Williams, J. R., Pentland, A. P. (1992) Superquadrics and Modal Dynamics for Discrète Elements in Interactive Design, Eng. Computations 9, 115–127.Google Scholar
  85. Williams, J. R., O’Connor R. (1995) A Linear Complexity Intersection Algorithm for Discrete Element Simulation of Arbitrary Geometries, Eng. Computations 12, 185–201.Google Scholar
  86. Wilson, E. A., Parsons, B. (1970) Finite Element Analysis of Elastic Contact Problems using Differential Displacements, Int. J. Num. Meth. Engng., 2, 387–395.Google Scholar
  87. Wriggers, P., Simo, J. C. (1985) A Note on Tangent Stiffness for Fully Nonlinear Contact Problems, Communications in Applied Numerical Methods, 1, 199–203.MATHGoogle Scholar
  88. Wriggers, P., Simo, J. C, Taylor, R. L. (1985) Penalty and Augmented Lagrangian Formulations for Contact Problems, in Proceedings of NUMETA 85 Conference, eds. J. Middleton & G.N. Pande, Balkema, Rotterdam.Google Scholar
  89. Wriggers, P., Wagner, W. , Stein, E. (1987) Algorithms for Nonlinear Contact Constraints with Application to Stability Problems of Rods and Shells, Computational Mechanics, 2, 215–230.ADSMATHGoogle Scholar
  90. Wriggers, P. (1987) On Consistent Tangent Matrices for Frictional Contact Problems, in Proceedings of NUMETA 87 Conference, eds. J. Middleton, G.N. Pande, Nijhoff, Dorbrecht.Google Scholar
  91. Wriggers, P., Wagner, W. (1988) A Solution Method for the Postcritical Analysis of Contact Problems, in The Mathematics of Finite Elements and Applications VI, Proceedings of MAFLEAP 87, ed. J. Whiteman, Academic Press, London.Google Scholar
  92. Wriggers, P., Vu Van, T., Stein, E. (1990) Finite Element Formulation of Large Deformation Impact-Contact Problems with Friction, Computers & Structures, 37, 319–331.MATHGoogle Scholar
  93. Wriggers, P., Miehe, C. (1992) Recent Advances in the Simulation of Thermomechanical Contact Processes, in Proceedings of COMPLAS III, eds. D.R.J. Owen, E. Hinton, E. E. Onate, Pineridge Press.Google Scholar
  94. Wriggers, P. (1993) Continuum Mechanics, Nonlinear Finite Element Techniques and Computational Stability, in Progress in Computational Analysis of Inelastic Structures, ed. E. Stein, Springer, Wien.Google Scholar
  95. Wriggers, P., Zavarise, G. (1993) On the Application of Augmented Lagrangian Techniques for Nonlinear Constitutive Laws in Contact Interfaces, Comm. Num. Meth. Engng. 9, 815–824, 1993.MATHGoogle Scholar
  96. Wriggers, P., Imhof, M. (1993) On the Treatment of Nonlinear Unilateral Contact Problems, Ing. Archiv, 63, 116–129.MATHGoogle Scholar
  97. Wriggers, P., Zavarise, G. (1993) Thermomechanical Contact - A Rigorous but Simple Numerical Approach, Computers & Structures, 46, 47–53.ADSGoogle Scholar
  98. Wriggers, P., Miehe C. (1994) Contact Constraints within Coupled Thermomechanical Analysis - A Finite Element Model, Comp. Meth. Appl. Mech. Engng., 113, 301–319.ADSMATHMathSciNetGoogle Scholar
  99. Wriggers, P., Scherf, O., Carstensen, C. (1994) Adaptive Techniques for the Contact of Elastic Bodies, in Recent Developments in Finite Element Analysis, eds. T. J. R. Hughes, E. Onate, O. C. Zienkiewicz, CIMNE, Barcelona.Google Scholar
  100. Wriggers, P. (1995) Finite Element Algorithms for Contact Problems, Archive of Computational Methods in Engineering, 2, 1–49.MathSciNetGoogle Scholar
  101. Wriggers, P., Hueck, U. (1995) A Formulation of the Enhanced QS6-Element for Large Elastic Deformations, to appear in Int. J. Num. Meth. Engng.Google Scholar
  102. Wriggers, P, Scherf, O. (1998) Adaptive finite element techniques for frictional contact problems involving large elastic strains, Comp. Meth. Appl. Mech. Engng., 151, 593–603.ADSMATHMathSciNetGoogle Scholar
  103. Yovanovich, M. M. (1981) Thermal Contact Correlations, AIAA Paper, 81–1164.Google Scholar
  104. Zavarise, G. (1991) Problemi termomeccanici di contatto - aspetti fisici e computazionali, Ph.D. Thesis, 1st. di Scienza e Tecnica delle Costruzioni, Univ. of Padua, Italy.Google Scholar
  105. Zavarise, G., Schrefler, B. A., Wriggers, P. (1992) Consistent Formulation for Ther-momechanical Contact based on Microscopic Interface Laws, in Proceedings of COMPILAS III, eds. D.R.J. Owen, E. Hinton, E. E. Onate, Pineridge Press.Google Scholar
  106. Zavarise, G., Wriggers, P., Stein, E., Schrefler, B. A. (1992a) Real Contact Mechanisms and Finite Element Formulation - A Coupled Thermomechanical Approach, Int. J. Num. Meth. Engng., 35, 767–786, 1992.MATHGoogle Scholar
  107. Zavarise, G., Wriggers, P., Stein, E., Schrefler, B. A. (1992b) A Numerical Model for Thermomechanical Contact based on Microscopic Interface Laws, Mech. Res. Comm., 19, 173–182.MATHGoogle Scholar
  108. Zavarise, G., Wriggers, P. (1995) Elastoplastic Contact Problems Solved by the Cross-Constraint Method, in Proceedings of COMPLAS IV, eds. D.R.J. Owen, E. Hinton, E. E. Onate, Pineridge Press.Google Scholar
  109. Zavarise, G., Wriggers, P., Schrefler, B. A. (1995) On Augmented Lagrangian Algorithms for Thermomechanical Contact Problems with Friction, Int. J. Num. Meth. Engng., 38, 2929–2949.MATHGoogle Scholar
  110. Zavarise, G., Wriggers, P., Schrefler, B. A. (1998) A Method for Solving Contact Problems, Int. J. Num. Meth. Engng., 42, 473–498.MATHGoogle Scholar
  111. Zienkiewicz, O. C, Zhu, J. Z. (1987) A Simple Error Estimator and Adaptive Procedure ; for Practical Engineering Analysis, Int. J. Num. Meth. Engrg., 24, 337–357.MATHMathSciNetGoogle Scholar
  112. Zienkiewicz, O. C, Taylor, R. L. (1989) The Finite Element Method, 4th edn., Mc Graw-Hill, London.Google Scholar
  113. Zienkiewicz, O. C, Zhu, J. Z. (1992) Superconvergent Patch Recovery Techniques and Adaptive Finite Element Refinement, Comp.Meth. Appl. Mech. Engng., 101, 207–224.ADSMATHMathSciNetGoogle Scholar
  114. Zhong, Z.-H., Nilsson, L. (1989) A Contact Searching Algorithm for General Contact Problems, Computers & Structures, 33, 197–209.ADSMATHGoogle Scholar
  115. Zhong, Z.-H. (1993) Finite Element Procedures for Contact-Impact Problems, Oxford University Press, Oxford.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • P. Wriggers
    • 1
  1. 1.University of HannoverHannoverGermany

Personalised recommendations