Quasistatic Signorini Problem with Coulomb Friction and Coupling to Adhesion

  • M. Raous
Part of the International Centre for Mechanical Sciences book series (CISM, volume 384)


In this course, we propose to outline some of the classical results obtained in contact mechanics and to present in addition some contributions resulting from the research carried out in our group “Mécanique et Modélisation du Contact” in the “Laboratoire de Mécanique et d’Acoustique” in Marseille. These research topics concern:
  • the study of the dynamic instabilities associated with friction in small or finite elastic deformations, in collaboration with Professor J.A.C. Martins from the IST in Lisbon, with applications to the modelling of stress waves occurring in some sliding contact or squeal phenomena involving rubber-glass contact ([8] [117]),

  • the development of models coupling adhesion, unilateral contact and friction with applications to the modelling of the fiber/matrix interface of composite materials ([17]

  • the modelling of frictional unilateral contact in finite plastic deformations conducted by P. Chabrand with applications to metal forming ([97] [42] [24] [83]),

  • the development of accelerating numerical approaches in contact mechanics, using methods such as multigrid or subdomain decomposition methods (Fast Adaptive Composite grids) or Arbitrary Lagrangian Eulerian formulations ([54] [83]),

  • the study of the mathematical aspects of the previous problems with Professor M. Cocu and E. Pratt.


Friction Coefficient Variational Inequality Contact Force Contact Problem Coulomb Friction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aitken A.C., 1950, On the iterative solution of a system of linear equations, Proc. Roy. Soc. Edinburgh, 63, pp. 52–60.MATHMathSciNetGoogle Scholar
  2. [2]
    Amontons G., 1699, Sur Vorigine de la résistance dans les machines, Memoires de l’Académie Royale, pp. 206–222.Google Scholar
  3. [3]
    Antes H., Panagiotopoulos P.D., 1992, The boundary integral approach to static and dynamic contact problems — Equality and inequality methods, International Series of Numerical Mathematics, 108, Birkhäuser Verlag, Basel.MATHGoogle Scholar
  4. [4]
    Archard J.F., 1957, Elastic deformation and the laws of friction, Proc. Royal Society of London, A, 243, pp. 190–205.ADSGoogle Scholar
  5. [5]
    Archard J.F., 1974, Surface topography and tribology, Tribology International, J, 7, pp. 213–220.Google Scholar
  6. [6]
    Auatt S., Borges L.M.S.A., Herskovits J., 1996, An interior point optimization algorithm for contact problem in linear elasticity, in “Numerical Methods in Engineering′96”, John Wiley, pp. 855–860.Google Scholar
  7. [7]
    Barbarin S., Martins J.A.C., Raous M., 1995, Friction and instabilities : stress waves in a sliding contact, in [Raous et al, éditeurs, 1995].Google Scholar
  8. [8]
    Barbarin S., 1997, Instabilité et frottement en élasticité — Application à un problème d’ondes de contrainte, Thesis, Université de Provence, MarseilleGoogle Scholar
  9. [9]
    Barquins M., Maugis D., 1982, Adhesive contact of axisymmetric punches on an elastic half-space: the modified Hertz-Huber Stress tensor for contacting spheres, Journal de Mécanique Théorique et Appliquée, 1, pp.331–344.MATHGoogle Scholar
  10. [10]
    Bay N., Wanheim T., Avitzur B., 1987, Models for friction in metal forming, NARMC XV, pp. 372–379.Google Scholar
  11. [11]
    Bay N., Wanheim T., 1976, Real area of contact and friction stress at high pressure sliding contact, Wear, 38, pp. 201–204.Google Scholar
  12. [12]
    Bazarra M.S., Shetty CM., 1979, Nonlinear programming-Theory and algorithms, John Wiley, New York.Google Scholar
  13. [13]
    Berhier Y., 1996, Maurice Godet’s third theory, in [Dowson et al, Ed., 1996]Google Scholar
  14. [14]
    Bouchitté G., Lidouh A., Suquet P., 1991, Homogénéisation de frontière pour la modélisation du contact entre un corps déformable non linèaire et un corps rigide, CRAS, Série I, t. 313, pp. 967–972.MATHGoogle Scholar
  15. [15]
    Cangémi L., Cocu M., Raous M., 1996a, Adhesion and friction model for the fibermatrix interface of a composite, in [Lagarde-Raous, Ed., 1996].Google Scholar
  16. [16]
    Cangémi L., Cocu M., Raous M., 1996b, Adhérence et frottement: une nouvelle approche pour les interfaces fibres/matrices, Actes des l0ieme Journées Nationales sur les Composites, 29–30 Octobre 1996, Paris.Google Scholar
  17. [17]
    Cangémi L., 1997, Frottement et adhérence : modèle, traitement numérique et application à l’interface fibre/matrice, Thesis, Université de la Méditerranée, MarseilleGoogle Scholar
  18. [18]
    Chabrand P., Chertier O., Martinet F., 1996, Friction laws in metal forming, in [Lagarde-Raous, Ed., 1996].Google Scholar
  19. [19]
    Chabrand P., Dubois F., Raous M., 1996, Programmation mathématique pour le contact avec frottement et comparaison avec d’autres méthodes, Actes du Colloque National de Calcul des Structures, 12–19 mai 1996, Giens.Google Scholar
  20. [20]
    Chabrand P., Dubois F., Gelin J.C., 1996, Modelling drawbeads in sheet metal forming, Int. J. Mech. Sci., Vol 38, 1, pp. 59–77.MATHGoogle Scholar
  21. [21]
    Chabrand P., Dubois F., Raous M., 1998, Various numerical methods for solving unilateral contact problems with friction, Mathematical and Computer Modelling, Vol. 28, n° 4–8, pp. 97–108.MATHGoogle Scholar
  22. [22]
    Challen J.M., Oxley P.L.B., 1979, An explanation of the different regimes of friction and wear — Effect of lateral tension and compression on plan srain flattening processes of surface asperities lying over a plastically deformable bulk, Wear, 140, pp. 17–38.Google Scholar
  23. [23]
    Challen J.M., McLean L.J., Oxley P.L.B., 1984, Plastic deformation of a metal surface in sliding contact with a hard wedge: its relation to friction and wear, Proc. Royal Soc. London, A 394, pp. 161–164.ADSGoogle Scholar
  24. [24]
    Chertier O., 1997, Contact et frottement entre solides déformables en grandes déformations, Thesis, Université de la Méditerranée, Marseille.Google Scholar
  25. [25]
    Cocu M., Pratt E., Raous M., 1995, Existence d’une solution du problème quasi statique de contact unilatéral avec frottement non local, C. R. Acad. Sci. Paris 320, Serie I, 1413–1417.MATHMathSciNetGoogle Scholar
  26. [26]
    Cocu M., Pratt E., Raous M., 1996, Formulation and approximation of quasistatic frictional contact, Int. J. Engng. Sd., vol 34, 7, 783–798.MATHMathSciNetGoogle Scholar
  27. [27]
    Cocu M., Pratt E., Raous M., 1998, Constructive aspects of functional analysis for the treatment of frictional contact, Mathematical and Computer Modelling, Vol. 28, n° 4–8, pp. 109–120.MATHMathSciNetGoogle Scholar
  28. [28]
    Cocu M., Cangémi L., Raous M., in press, Approximation results for a class of quasistatic contact problem including adhesion and friction, in Proceedings IU-TAM’97 “Variation of domains and free-boundary problems in solids mechanics” (Paris, 22–25 Avril 1997), Kluwer.Google Scholar
  29. [29]
    Coulomb C.A., 1785, Théorie de machines simples, Mémoire de Mathémath-ique et de Physique de l’Académie Royale, 10, pp. 161–342.Google Scholar
  30. [30]
    Christensen P.W., Klarbring A., Pang J.S., Strömberg N., 1998, Formulation and comparison of algorithms for frictional contact problems, International Journal of Numerical Methods in Engineering, 42, pp. 145–173.ADSMATHGoogle Scholar
  31. [31]
    Curnier A., 1984, A theory of friction, Int. J. Solids Struct., Vol. 20, n°7, pp. 637–647.MATHGoogle Scholar
  32. [32]
    Curnier A., Alart P., 1988, A generalized Newton method for contact problems with friction, J. Méca. Th. Appl., Vol. 7, pp. 67–82.MATHMathSciNetGoogle Scholar
  33. [33]
    Curnier A., Editor, 1992, Contact Mechanics, Proceedings of CMIS, Presses Polytechniques et Universitaires Romandes, Lausanne, Suisse.MATHGoogle Scholar
  34. [34]
    Delamare F., Editeur , 1993, Tribologie et mise en forme des matériaux-Actes des Journées Scientifiques de la Société de Tribologie de France- 9/10 avril 1992, Matériaux et Structures, Numéro Spécial, n 1–2–3.Google Scholar
  35. [35]
    Del Piero G., Maceri F., Editors, 1985, Unilateral Problems in Structural Analysis, Proc. Meeting on “Unil. Prob, in Struct. Anal.” (Ravello, 22–24 Sept. 1983), CISM Courses and Lectures, 288, Springer-Verlag, Wien.MATHGoogle Scholar
  36. [36]
    Del Piero G., Maceri F., Editors, 1987, Unilateral Problems in Structural Analysis, Proc. Meeting on “Unil. Prob, in Struct. Anal.” (Udine, 17–20 June 1985), CISM Courses and Lectures, 304, Springer-Verlag, Wien.MATHGoogle Scholar
  37. [37]
    Del Piero G., Maceri F., Editors, 1991, Unilateral Problems in Structural Analysis IV, Proc. Meeting on “Unil. Prob, in Struct. Anal.” (Capri, 14–16 June 1989), Int. Series of Numerical Mathematics, Vol 101, Birkhäuser Verlag, Basel.MATHGoogle Scholar
  38. [38]
    Demkowicz L., Oden J.T., 1982, On some existence and uniqueness results in contact problem with non local friction, Nonlinear Analysis, 6, 1075.Google Scholar
  39. [39]
    Dilintas G., Laurent-Gengoux P., Trystam D., 1988, A conjugate projected gradient method with preconditionning for unilateral problems, Computers and Structures, vol. 29, n°4, 675–680.Google Scholar
  40. [40]
    Dowson D., 1979, History of Tribology, Longman, New York.Google Scholar
  41. [41]
    Dowson D., Taylor CM., Childs T.H.C., Dalmaz G., Berthier Y., Flamand L., Georges J.-M., Lubrecht A.A., Editeurs, 1996, The third body concept: interpretation of tribological phenomena (Proc. 22nd Leeds-Lyon Symposium on Tribology), Tribology Series, 31, Elsevier, Amsterdam.Google Scholar
  42. [42]
    Dubois F., 1994, Contact, frottement, grandes déformations élastoplastiques. Application à l’emboutissage, Thesis, Université de la Méditerranée, Marseille.Google Scholar
  43. [43]
    Duvaut G., Lions J. L., 1972, Les inéquations en mécanique et en physique, Dunod, Paris.MATHGoogle Scholar
  44. [44]
    Duvaut G., 1980, Equilibre d’un solide élastique avec contact unilatéral et frottement de Coulomb, C. R. Acad. Sci. Paris 290, Série A, 263–265.MATHMathSciNetGoogle Scholar
  45. [45]
    Feijoo, Barbosa H.J.C., Zouain N., 1988, Numerical formulations for contact problem with friction, in [Raous (Ed.), 1988].Google Scholar
  46. [46]
    Felder E., 1993, La tribologie de l’emboutissage, in [Delamare, Ed., 1993].Google Scholar
  47. [47]
    Fichera G., 1972, Boundary value problems in elasticity with unilateral constraints, in Encyclopedia of Physics, S. Flüge (Ed.), Vol. VI a/2, Springer Verlag, Berlin.Google Scholar
  48. [48]
    Francavilla A., Zienkiewicz O.C., 1975, A note on numerical computation of elastic contact problems, Int. J. Num. Meth. Eng., Vol. 9, pp. 913–924.Google Scholar
  49. [49]
    Frémond M., 1987, Adhérence des solides, Journal de Mécanique Théorique et Appliquée, Vol.6, n°3, pp 383–407.ADSMATHGoogle Scholar
  50. [50]
    Frémond M., N. Point, E. Sacco, J.M. Tien, 1996, Contact with adhesion, in [Lagarde-Raous, eds, 1996].Google Scholar
  51. [51]
    Glowinski R., Lions J.-L., Trémolieres R., 1976, Analyse numérique des inéquations variationnelles, Dunod, Paris.MATHGoogle Scholar
  52. [52]
    Greenwood J.A., Tabor D., 1957, Deformation properties of friction junctions, Proc. Phys. Soc, 68B, London, pp. 609–619.Google Scholar
  53. [53]
    Greenwood J.A., Williamson J.B., 1966, Contact of nominally flat surfaces, Proc. Royal Soc. London, A 255, pp. 300–319.ADSGoogle Scholar
  54. [54]
    Grégo L., 1995, Méthodes multiniveaux pour des problèmes de contact unilatéral avec frottement, Thèse de doctorat, Université de Provence, Marseille.Google Scholar
  55. [55]
    Heegard J.-H., Curnier A., 1993, An augmented Lagrangian method for discrete large-slip contact problems,hit. J. Num. Meth. Eng., Vol. 36, pp. 569–593.Google Scholar
  56. [56]
    Ike H., 1995, Plastic deformation of surface asperities associated with bulk deformation of metal workpiece in contact with rigid tool, in [Raous et al, Editors, 1995], pp.275–286.Google Scholar
  57. [57]
    Ike H., Makinouchi A., 1990, Effect of lateral tension and compression on plan srain flattening processes of surface asperities lying over a plastically deformable bulk, Wear, 140, pp. 17–38.Google Scholar
  58. [58]
    Irons B.M., Tuck R.C., 1969, A Version of the Aitken Accelerator for Computer Iterations, Int. J. of Numerical Methods in Engineering, 1, 275–277.ADSMATHGoogle Scholar
  59. [59]
    Jean M., Moreau J.J., 1987, Dynamics in the presence of unilateral contact and dry friction: a numerical approach, in “Unilateral problems in structural analysis-2”, CISM Lectures, No 304, Del Piero et Maceri (Eds), Springer-Verlag.Google Scholar
  60. [60]
    Jean M., 1993, Simulation numérique des problèmes de contact avec frottement, in [Delamare, Ed., 1993].Google Scholar
  61. [61]
    Jeuzette J.P., Sonzogni V., 1989, A projected conjugate gradient method for structural stability analysis with linear constraints, Computers and Structures, vol. 33, n°1, 31–39.Google Scholar
  62. [62]
    Johnson K.L., 1987, Contact Mechanics, Cambridge University Press, U.K.Google Scholar
  63. [63]
    Kalker J.J., 1990, Three-dimensional elastic bodies in rolling contact, Series “Solid Mechanics and its Application”, Kluwer Ac, Dordrecht, The Netherland.MATHGoogle Scholar
  64. [64]
    Kikuchi N., Oden J.T., 1988, Contact problems in Elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics, Philadelphia, USAMATHGoogle Scholar
  65. [65]
    Kikuchi N., Song Y.J., 1981, Penalty finite element approximations of a class of unilateral problems in linear elasticity, Quartely of Appl. Math., Vol. 39, n°1, pp.1–21.MATHMathSciNetGoogle Scholar
  66. [66]
    Klarbring A., 1986, A mathematical programming approach for three-dimensional contact problem with friction, Computer Methods and Applications in Mechanical Engineering, 58, 175–200.ADSMATHMathSciNetGoogle Scholar
  67. [67]
    Klarbring A., 1986, General contact boundary conditions and the analysis of frictional systems, Int. J. Solids Struct. 22, 12, pp. 1377–1398.MATHMathSciNetGoogle Scholar
  68. [68]
    Klarbring A., 1987, Contact problems with friction by linear complementarity, in “Unilateral Problems in Structural Analysis-2”, Eds Del Piero-Maceri, CISM Courses and Lectures, 304, Springer-Verlag, Wien, pp. 197–220Google Scholar
  69. [69]
    Klarbring A., Björkman G., 1988, A mathematical programming approach to contact problems with friction and varying surfaces, Computer and Structures, 30, 5, pp. 1185–1198.MATHGoogle Scholar
  70. [70]
    Klarbring A., Mikelic A., Shillor M., 1988, Frictional contact problems with normal cpmpliance, Int. J. Engng. Sci., Vol. 26, n° 8, pp. 811–832.MATHMathSciNetGoogle Scholar
  71. [71]
    Klarbring A., 1990, Examples of non-uniqueness and non existence of solutions to quasistatic contact problem with friction, Ingenieur-Archiv., 56, pp. 529–541.Google Scholar
  72. [72]
    Klarbring A., Mikelic A., Shillor M., 1991, A global existence result for the quasistatic frictional contact problem with normal compliance, Int. Series Num. Math., 101, pp. 85–111.MathSciNetGoogle Scholar
  73. [73]
    Lagarde A., Raous M., Editeurs, 1996, Photomechanics — Contact Mechanics and Tribology, Vol 4 of Proc. ESDA’96/Montpellier 1–4 July 1996, ASME eds, New York.Google Scholar
  74. [74]
    Latil J.-C, Raous M., 1991, Module Gyptis Version 1.0 : Contact unilatéral avec frottement en Mécanique des Structures — Inéquations variationnelles, Publications LMA, 132, CNRS.(also available in INRIA-Modulef publication)Google Scholar
  75. [75]
    Lascaux P., Theodor R., 1987, Analyse numérique matricielle appliquée à Vart de Vingénieur, Masson, Paris.Google Scholar
  76. [76]
    Lebon F., Raous M., 1992, Multibody contact problem including friction in structure assembly, Comp. Struct. 43, 5, pp. 925–934.MATHGoogle Scholar
  77. [77]
    Lemke CE., 1980, A survey of complementarity theory, in Variational Inequalities and Complementarity Problems, Eds Cottle-Gianessi-Lions, John Wiley, New York, pp. 213–235.Google Scholar
  78. [78]
    Lions J.L., Stampacchia G., 1967, Variational inequalities, Communications on Pure and Aplied Mathematics, 10, pp. 493–519.MathSciNetGoogle Scholar
  79. [79]
    Licht C, Pratt E., Raous M., 1991, Remarks on a numerical method for unilateral contact including friction, Int. Series Num. Math., 101, pp. 129–144.MathSciNetGoogle Scholar
  80. [80]
    Licht C, 1993, Comportement asymptotique d’une bande dissipative mince de faible rigidité, CRAS, t. 317, Série I, pp. 429–433.MATHMathSciNetGoogle Scholar
  81. [81]
    Makinouchi A., Ike H., Murakawa M., Koga N., 1988, A finite element analysis of flattening of surface asperities by perfectly lubricated rigid dies in metal working processes, Wear, 128, pp. 109–122.Google Scholar
  82. [82]
    Marks W.R., Salamon N.J., 1983, A projected conjugate gradient method for frictionless contact problems, Transaction of the ASME-Journal of Vibrations, Acoustics, Stress and Reliability in Design, Vol 105.Google Scholar
  83. [83]
    Martinet F., 1998, Etude et mise en oeuvre de formulation ALE — Application au contact lubrifié en mise en forme, Thesis, Université de la Méditerranée, Marseille.Google Scholar
  84. [84]
    Martins J.A.C., Barbarin S., Raous M., Pinto da Costa A., to appear, Dynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb friction, Computational Methods in Applied Mechanics and Engineering, Special Issue “Computational Modelling of Contact and Friction”, A. Klarbring-J.A.C. Martins (Eds.).Google Scholar
  85. [85]
    Martins J.A.C., Oden J.T., 1987, Existence and uniqueness results for dynamic contact problem with nonlinear normal and friction interface laws, Nonlinear Analysis , Theory, Methods and Applications, vol 11, 3, pp. 407–428.MathSciNetGoogle Scholar
  86. [86]
    May H.-O., 1986, The conjugate gradient method for unilateral problems, Computer and Structures, vol. 12, n°4, pp.595–598.Google Scholar
  87. [87]
    Maugis D., 1996, On the contact and adhesion of rough surfaces, J. Adhesion Sci. Technol., 10, pp. 161–175.Google Scholar
  88. [88]
    Monerie Y., Raous M., Leroy F.-H., Sudre O., Feyel F., Chaboche J.-L., 1998, Comparaison de lois d’interface fibre/matrice sur la base d’un modèle simplifié d’expérience de microindentation, Proceedings “XI Journées Nationales des Composites — JNC11”, Bordeaux, Novembre 1998.Google Scholar
  89. [89]
    Moreau J. J., 1970, Sur les lois de frottement, de plasticité et de viscosité, C. R. Acad. Sci. Paris 271, Serie A, 608–611.Google Scholar
  90. [90]
    Moreau J.J., 1988, Unilateral contact and dry friction in finite freedom dynamics, in [Moreau-Panagiotopoulos, Ed.], pp. 1–82.Google Scholar
  91. [91]
    Moreau J.-J., Panagiotopoulos P.D., Editors, 1988, Non Smooth Mechanics and Applications, CISM Courses and Lectures, 302, Springer-Verlag, Wien.Google Scholar
  92. [92]
    Necas J., Jarusek J., Haslinger J., 1980, On the solution of the variational inequality to the Signorini problem with small friction, Bolletino U. M. I. 5, 17-B, pp. 796–811.MathSciNetGoogle Scholar
  93. [93]
    Oden J.T., Pires E.B., 1983, Non local and non linear friction laws and variational principles for contact problem in elasticity, J. Appl. Mech., vol 50, pp. 67–75.ADSMATHMathSciNetGoogle Scholar
  94. [94]
    Oden J.T., Martins J.A.C., 1985, Models and computational methods for dynamic friction phenomena, Computer Methods in Applied Mechanics and Engineering, vol 52, pp. 527–634.ADSMATHMathSciNetGoogle Scholar
  95. [95]
    Oudin J., Rigaud J.M., Gelin J.C., Ravalard Y., 1987, Approches expérimentales et numériques des conditions de contact et de frottement, Ecole d’été Matériaux Mise en Forme Produits Formés, 21–25 Septembre 1987.Google Scholar
  96. [96]
    Papadrakakis M., Ghionis P., 1986, Conjugate gradient algorithms in nonlinear structural analysis problems, Computer Methods in Applied Mechanics and Engineering, vol. 59, pp. 11–27.ADSMATHGoogle Scholar
  97. [97]
    Pinto Y., 1990, Contact et frottement en grandes déformations plastiques. Application au serre-flan en emboutissage, Thèse de doctorat, Université de Provence, Marseille.Google Scholar
  98. [98]
    Rabinowicz E., 1995, Friction and wear of materials, 2nd edition, John Wiley, New YorkGoogle Scholar
  99. [99]
    Raous M. (Ed.), 1988, Numerical methods in mechanics of contact involving friction, J. de Mécanique Théorique et Appliquée, Special Issue, Supp. 1 to vol. 7, Gauthier-Villars.Google Scholar
  100. [100]
    Raous M., Chabrand P., Lebon F., 1988, Numerical methods for solving unilateral contact problems with friction, in [Raous (Ed.), 1988].Google Scholar
  101. [101]
    Raous M., Sage M., 1992, Numerical simulation of the behaviour of surface asperities for metal forming, in Numerical Methods in Industrial Forming Processes, Chenot-Wood-Zienkiewicz Editors, Balkema, Rotterdam, The Netherlands.Google Scholar
  102. [102]
    Raous M., Barbarin S., 1992, “Conjugate Gradient for Frictional Contact”, Proceedings of Contact Mechanics International Symposium, Curnier A. (ed), Presses Polytech. et Univ. Romandes, Lausanne, pp; 423–432.Google Scholar
  103. [103]
    Raous M., Boyer R., Grégo L., 1993, Convergence et efficacité de méthodes multigrilles pour un problème de contact avec frottement, Actes du Colloque National en Calcul des Structures, Bernadou-Cornuault-Léné-Ohayon (Eds), Publisher Hermes, Paris.Google Scholar
  104. [104]
    Raous M., Moreau J. J., Jean M. (Eds.), 1995, Contact Mechanics, Plenum Publisher, New York.Google Scholar
  105. [105]
    Raous M., Barbarin S., Vola D., Martins J.A.C., 1995, Friction induced instabilities and sound generation, Actes ASME Design Engineering Technical Conference, 18–21 September 1995, Boston, USA, pp. 799–802.Google Scholar
  106. [106]
    Raous M., Barbarin S., 1996, Stress waves in a sliding contact — Part 2 : Modelling, in [Dowson et al, éditeurs, 1996]Google Scholar
  107. [107]
    Raous M., Cangémi L., Cocu M., 1997, Un modèle couplant adhérence et frotement pour le contact entre deux solides déformables, CR. Acad. Sci. Paris, t. 325, Série II b, pp. 503–509.ADSMATHGoogle Scholar
  108. [108]
    Raous M., Cangémi L., Cocu M., to appear, A consistent model coupling adhesion, friction and unilateral contact, Computer Methods in Applied Mechanics and Engineering, Special Issue “Computational Modelling of Contact and Friction”, A. Klarbring-J.A.C. Martins (Eds.).Google Scholar
  109. [109]
    Sanchez-Palencia E., Suquet P., 1983, Friction and homogenization of a boundary, in Free boundary problems: theory and applications-vol II, Fasano-Primicerio editors, Pitman, London, pp. 561–571.Google Scholar
  110. [110]
    Simo J.C., Laursen T.A., 1992, An augmented Lagrangian treatment of contact problems involving friction, Comp. Struct., Vol. 30, n 5, pp. 1185–1198.MathSciNetGoogle Scholar
  111. [111]
    Strömberg N., Johansson L., Klarbring, A., 1995, A generalized standard model for contact, friction and wear, in [Raous et al, Ed., 1996].Google Scholar
  112. [112]
    Tabor D., 1981, Friction-The present state of our understanding, J. of Lubrication Technology, Transactions of the ASME, vol 103, pp. 169–179.Google Scholar
  113. [113]
    Telega J.J., 1991, Quasi-static SignorinVs contact problem with friction and duality, Int. Series Num. Math., 101, pp. 199–214.MathSciNetGoogle Scholar
  114. [114]
    Tien Truong Dinh J.M., 1990, Contact avec adhérence, Thèse de Doctorat del’Université M. Curie, Paris 6.Google Scholar
  115. [115]
    Vola D., Pratt E., Raous M., Jean M., 1998, Formulation of a dynamical contact problem involving Coulomb friction, Revue Européenne des Eléments Finis, Vol. 7, n°1–2–3, pp. 149–162.MATHGoogle Scholar
  116. [116]
    Vola D., Barbarin S., Pinto da Costa A., Martins J.A.C., Raous M., to appear, Bifurcations and instabilities in some finite dimensional frictional contact problem, Proceedings IUTAM Symposium “Unilateral multibody dynamics”, F. Pfeiffer (Ed.), München — August 1998.Google Scholar
  117. [117]
    Vola D., 1999, Frottement et instabilités en dynamique : bruits de crissement, Thesis, Université de la Méditerranée, Marseille.Google Scholar
  118. [118]
    Wilson W.R.D., Sheu S., 1988, Real area of contact and boundary friction in metal forming, Int. J. Mech. Sci., Vol 30, 7, pp. 475–489.Google Scholar
  119. [119]
    Wriggers P., Simo J.C., Taylor R.L., 1985, Penalty an augmented Lagrangian formulations for contact problems, in Proceed, of NUMETA 85 Conference, J. Middleton-G.N. Pande (Eds.), Balkema, Rotterdam.Google Scholar
  120. [120]
    Wriggers P., Zavarize G., 1993, On the application of Augmented Lagrangian techniques for non linear constitutive laws in contact interfaces, Comm. Num. Meth. Engn., Vol. 9, pp. 815–824.MATHGoogle Scholar
  121. [121]
    Wronski M., Jean M., 1995, Some somputational aspects of structural dynamics problems with frictional contact, in [citeRaous95a].Google Scholar
  122. [122]
    Zeghloul T., Villechaise B., 1996, Stress waves in a sliding contact — Part 1 : Experimental study, in [Dowson et al, éditeurs, 1996]Google Scholar
  123. [123]
    Zhong Z.H., Mackerle J., 1992, Static contact problems — a review, Engineering computations, vol 9, pp. 3–37.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • M. Raous
    • 1
  1. 1.Laboratoire de Mécanique et d’AcoustiqueCNRSMarseilleFrance

Personalised recommendations