Skip to main content

Contact, Friction, Discrete Mechanical Structures and Mathematical Programming

  • Conference paper
New Developments in Contact Problems

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 384))

Abstract

These lecture notes contain three main parts. The first part is the mathematical modeling of the discrete finite-dimensional, small displacement, quasistatic, frictional contact problem.

The second part contains four sections, where four different contact problems are formulated as Linear Complementarity Problems (LCPs): the frictionless problem, the steady sliding problem, the rate problem and the incremental problem. These are all derived from the quasistatic problem formulated in the first part. The four problems are discussed with respect to existence and multiplicity of solutions.

The third and final part of the lecture notes concerns structural optimization in contact problems. We go through the main peculiarities related to optimum mechanical design of structures involving unilateral frictionless contact and give examples of results obtained for the so called gap design problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Alart, “Critères d’injectivité et de surjectivité pour certaines applications de Rn dans lui-même; application a la mécanique du contact”, Mathematical Modelling and Numerical Analysis 27 (1993) 203–222.

    MATH  MathSciNet  Google Scholar 

  2. A. Alart, F. Lebon, F. Quittau and K. Rey, “Frictional contact problem in elas-tostatics: revisiting the uniqueness condition”, in Contact Mechanics, eds. M. Raous, M. Jean and J.J. Moreau, Plenum Press, New York (1995) 63–70.

    Chapter  Google Scholar 

  3. A.M. Al-Fahed and P.D. Panagiotopoulos, “Multifingered frictional robot grippers: a new type of numerical implementation”, Computers & Structures 42 (1992) 555–562.

    Article  Google Scholar 

  4. A.M. Al-Fahed, G.E. Stavrolakis and P.D. Panagiotopoulos, “Hard and soft fingered robot grippers. The linear complementarity approach”, Zeitschrift für Angewandte Mathematik und Mechanik 71 (1991) 257–265.

    Article  ADS  MATH  Google Scholar 

  5. L.-E. Andersson, “Quasistatic frictional contact problems with finitely many degrees of freedom”, manuscript.

    Google Scholar 

  6. L.-E. Andersson, “A quasistatic frictional problem with normal compliance”, Non-linear Analysis 16 (1991) 347–369.

    Article  MATH  Google Scholar 

  7. L.-E. Andersson, “A global existence result for a quasistatic contact problem with friction”, Advances in Mathematical Sciences and Applications 5 (1995) 249–286.

    MATH  MathSciNet  Google Scholar 

  8. C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems, John Wiley, Chichester (1984).

    MATH  Google Scholar 

  9. R.L. Benedict, J.E. Taylor, “Optimal design for elastic bodies in contact”, in Optimization of distributed-parameter structures, eds. E.J. Haug and J. Cea, Sijhoff and Noordhoff, Alphen aan den Rijn, Holland (1981), 1443–1599.

    Google Scholar 

  10. J.F. Besseling, “Finite element methods”, in Trends in Solid Mechanics, eds. J.F. Besseling and Van der Heijden, Sijthoff and Noordhoff (1979) 53–78

    Google Scholar 

  11. D. Chan and J.S. Pang, “The generalized quasi-variational inequality problem”, Mathematics of Operations Research 7 (1982) 211–222.

    Article  MATH  MathSciNet  Google Scholar 

  12. P.W. Christensen, A. Klarbring, J.-S. Pang and N. Strömberg, “Formulation and Comparison of Algorithms for Frictional Contact Problems”, International Journal for Numerical Methods in Engineering, forthcoming.

    Google Scholar 

  13. P.W. Christensen and J.-S. Pang, “Frictional contact algorithms based on semis-mooth Newton methods”, Reformulation- Nonsmooth, Piecewise Smooth, Semis-mooth and Smoothing Methods, forthcoming.

    Google Scholar 

  14. M. Cocu, “Existence of solutions of Signorini problems with friction”, International Journal of Engineering Science 22 (1984) 567–575.

    Article  MATH  MathSciNet  Google Scholar 

  15. T.F. Conry and A. Seireg, “A mathematical programming method for design of elastic bodies in contact”, Journal of Applied Mechanics 2(1971) 387–392.

    Article  ADS  Google Scholar 

  16. R.W. Cottle, J.-S. Pang and R.E. Stone, The Linear Complementarity Problem, Academic Press, Boston (1992).

    MATH  Google Scholar 

  17. L. Demkowicz and J.T. Oden, “On some existence and uniqueness results in contact problems with nonlocal friction”, Nonlinear Analysis 6 (1982) 1075–1093.

    Article  MATH  MathSciNet  Google Scholar 

  18. I. Doudoumis, E. Mitsopoulou and N. Charalambakis, “The influence of the friction coefficients on the uniqueness of the solution of the unilateral contact problem”, in Contact Mechanics, eds. M. Raous, M. Jean and J.J. Moreau, Plenum Press, New York (1995) pp. 63–70.

    Google Scholar 

  19. G. Duvaut, “Equilibre d’un solide élastique avec contact unilatéral et frottement de Coulomb”, Comptes Rendues Academie Sciences, Paris/A 290 (1980) 263–265.

    MATH  MathSciNet  Google Scholar 

  20. G. Duvaut, J.L. Lions, Inequalities in Mechanics and Physics, Springer, Berlin (1976).

    Book  MATH  Google Scholar 

  21. G. Fichera, “Boundary value problems in elasticity with unilateral constraints”, in Encyclopedia of Physics, ed. S. Flügge, Vol. VI a/2, Springer Verlag, Berlin (1972).

    Google Scholar 

  22. C. Fleury, “First and second order convex approximation strategies in structural optimization”, Structural Optimization 1 (1989) 3–10.

    Article  Google Scholar 

  23. C. Fleury, “CONLIN: An efficient dual optimizer based on convex approximation concepts”, Structural Optimization 1 (1989) 81–89

    Article  Google Scholar 

  24. C. Fleury, “Sequential convex programming for structural optimization problems”, In: Optimization of Large Structural Systems, Proceedings of the NATO/DFG ASI Conference, Berchtesgaden, Germany, September23 October 4, ed. G.I.N. Rozvany, Kluwer, Dordrecht (1993) 531–555.

    Google Scholar 

  25. F. Gastaldi, Remarks on a noncoercive contact problem with friction in elasto-statics, Istituto di analisi numerica, Pubblicazioni N. 649, Pavia (1988).

    Google Scholar 

  26. F. Gastaldi, M.D.P. Monteiro Marques and J.A.C. Martins, “A two degree-of-freedom quasistatic contact problem with viscous damping”, Advances in Mathematical Sciences and Applications, forthcoming.

    Google Scholar 

  27. F. Gastaldi, M.D.P. Monteiro Marques, and J.A.C. Martins, “Mathematical analysis of a two degree-of-freedom frictional contact problem with discontinuous solutions” Nonlinear Differential Equations and Applications, forthcoming.

    Google Scholar 

  28. J. Haslinger and A. Klarbring, Shape optimization in unilateral problems using generalized reciprocal energy as objective functional, Nonlinear Analysis, Methods & Applications, Vol. 21, No. 11, pp. 815–834, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  29. J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape, Material and Topology Design, Second Edition, Wiley 1996.

    MATH  Google Scholar 

  30. E.J. Haug and B.M. Kwak, “Contact stress minimization by contour design”, International Journal for Numerical Methods in Engineering, 12 (1978) 917–939.

    Article  ADS  MATH  Google Scholar 

  31. D. Hilding, in preparation.

    Google Scholar 

  32. D. Hilding, A. Klarbring, J. Petersson, “Optimization of structures in unilateral contact”, Applied Mechanics Reviews, forthcoming.

    Google Scholar 

  33. V. Janovsky, Catastrophic features of Coulomb friction model, Technical Report KNM-0105044/80, Charles University, Prague (1980).

    Google Scholar 

  34. V. Janovsky, “Catastrophic features of Coulomb friction model”, in The Mathematics of Finite Elements and Applications, ed. J.R. Whiteman, Academic Press, London (1981) 259–264.

    Google Scholar 

  35. J. Jarusek, “Contact problems with friction. Coercive case”, Czechoslovak Mathematical Journal 33 (1983) 237–261.

    MathSciNet  Google Scholar 

  36. J. Jarusek, “Contact problems with friction. Semicoercive case”, Czechoslovak Mathematical Journal 34 (1984) 619–629.

    MathSciNet  Google Scholar 

  37. L. Johansson and A. Klarbring, “The rigid punch problem with friction using variational inequalities and linear complementarity”, Mechanics of Structures and Machines 20(3) (1992) 293–319.

    Article  MathSciNet  Google Scholar 

  38. Y. Kato, “Signorini’s problem with friction in linear elasticity”, Japan Journal of Applied Mathematics 4 (1987) 237–268.

    Article  MATH  MathSciNet  Google Scholar 

  39. A. Klarbring, Quadratic Programs in Frictionless Contact Problems. International Journal of Engineering Science, Vol. 22, No. 7, 1986, pp 1207–1217

    Article  MathSciNet  Google Scholar 

  40. A. Klarbring, “A mathematical programming approach to three-dimensional contact problems with friction”, Computational Methods in Applied Mechanics and Engineering 58 (1986) 175–200.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. A. Klarbring, “Contact problems with friction by linear complementarity”, in Unilateral Problems in Structural Analysis, Vol. 2 (CISM Courses and Lectures, No. 304), eds. G. Del Piero, F. Maceri, Springer, Wien (1987) 197–219.

    Google Scholar 

  42. A. Klarbring, “Derivation and analysis of rate boundary-value problems with friction”, European Journal of Mechanics/A 1 (1990) 211–226.

    MathSciNet  Google Scholar 

  43. A. Klarbring, “Examples of non-uniqueness and non-existence of solutions to qua-sistatic contact problems with friction”, Ingenieur-Archiv 60 (1990) 529–541.

    Google Scholar 

  44. A. Klarbring, “Mathematical programming and augmented Lagrangian methods for frictional contact problems”, in Proceedings Contact Mechanics International Symposium, ed. A. Curnier, Presses Polytechniques et Universitaires Romandes (1992) 409–422.

    Google Scholar 

  45. A. Klarbring, On the problem of optimizing contact force distributions, Journal of Optimization Theory and Applications, Vol. 74, pp. 131–150, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  46. A. Klarbring, “Mathematical programming in contact problems”, Chapter 7 in Computational Methods in Contact Mechanics, eds. M.H. Aliabadi and C. A. Brebbia, Computational Mechanics Publications, Southampton (1993) 233–263.

    Google Scholar 

  47. A. Klarbring, Steady sliding and linear complementarity, in Complementarity and Variational Problems, eds. M.C. Ferris, J.-S. Pang, SIAM (1997) 132–147.

    Google Scholar 

  48. A. Klarbring and G. Björkman, “A mathematical programming approach to contact problems with friction and varying contact surface”, Computers & Structures 30 (1988) 1185–1198.

    Article  MATH  Google Scholar 

  49. A. Klarbring and J. Haslinger, On almost constant contact stress distributions by shape optimization, Structural Optimization, Vol. 5, pp. 213–216, 1993.

    Article  Google Scholar 

  50. A. Klarbring, A. Mikelic and M. Shillor, “Frictional contact problems with normal compliance”, International Journal of Engineering Science 26 (1988) 811–832.

    Article  MATH  MathSciNet  Google Scholar 

  51. A. Klarbring, A. Mikelic and M. Shillor, “On friction problems with normal compliance”, Nonlinear Analysis 13 (1989) 935–955.

    Article  MATH  MathSciNet  Google Scholar 

  52. A. Klarbring, A. Mikelic and M. Shillor, “A global existence result for the qua-sistatic frictional contact problem with normal compliance”, International Series of Numerical Mathematics 101, Birkhüser Verlag, Basel (1991) 85–111.

    Google Scholar 

  53. A. Klarbring and J.S. Pang, “Existence of solutions to discrete semicoercive frictional contact problems”, SIAM Journal on Optimization, 8(2) (1998) 414–442.

    Article  MATH  MathSciNet  Google Scholar 

  54. A. Klarbring, J. Petersson and M. Rönnquist, Truss topology optimization involving unilateral contact, Journal of Optimization Theory and Applications, Vol. 87, pp. 1–31,1995.

    Article  MATH  MathSciNet  Google Scholar 

  55. A. Klarbring and M. Rönnqvist, “Nested approach to structural optimization in nonsmooth mechanics”, Struct. Opt., 10 (1995) 79–86.

    Article  Google Scholar 

  56. A. Klarbring and J.S. Pang, “The discrete steady sliding problem”, ZAMM, forthcoming.

    Google Scholar 

  57. T. Larsson and M. Rönnqvist “A method for structural optimization which combines second-order approximations and dual techniques”, Structural Optimization 5 (1993) 225–232.

    Article  Google Scholar 

  58. Z.-Q. Luo, J.-S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge University Press 1997.

    MATH  Google Scholar 

  59. Z.-Q. Luo and P. Tseng, A decomposition property for a class of square matrices, Applied Mathematics Letters 4(5) (1991) 67–69.

    Article  MATH  MathSciNet  Google Scholar 

  60. J.A.C. Martins, M.D.P. Monteiro Marques, and F. Gastaldi, “On an example of non-existence of solutions to a quasistatic frictional contact problem”, European Journal of Mechanics /A 13 (1994) 113–133.

    MATH  MathSciNet  Google Scholar 

  61. J.A.C. Martins, F.M.F. Simões, F. Gastaldi, and M.D.P. Monteiro Marques, “Dis-sipative graph solutions for a 2 degree-of-freedom quasistatic frictional contact problem”, International Journal of Engineering Science 33 (1995) 1959–1986.

    Article  MATH  MathSciNet  Google Scholar 

  62. J. Nečas, J. Jarušek, and J. Haslinger, “On the solution of the variational inequality to the Signorini problem with small friction”, Bolletino UMI 5 (1980) 796–811.

    Google Scholar 

  63. P.D. Panagiotopoulos, “Convex analysis and unilateral static problems”, Ingenieur-Archiv 45 (1976) 55–68.

    Article  MATH  Google Scholar 

  64. J.S. Pang and J.C. Trinkle, “Complementarity formulations and existence of solutions of multi-rigid-body contact problems with Coulomb friction”, Mathematical Programming, forthcoming.

    Google Scholar 

  65. J. Petersson, Behaviorally constrained contact force optimization, Structural Optimization, Vol. 9, pp. 189–193, 1995.

    Article  Google Scholar 

  66. J. Petersson and A. Klarbring, Saddle point approach to stiffness optimization of discrete structures including unilateral contact, Control and Cybernetics, Vol. 3, pp. 461–479, 1994.

    MathSciNet  Google Scholar 

  67. J. Petersson, On stiffness maximization of variable thickness sheet with unilateral contact, Quarterly of Applied Mathematics 54(3) (1996) 541–550.

    MATH  MathSciNet  Google Scholar 

  68. J. Petersson and J. Haslinger, An approximation theory for optimum sheets in unilateral contact, Quarterly of Applied Mathematics, forthcoming.

    Google Scholar 

  69. J. Petersson and M. Patriksson, Topology optimization of sheets in contact by a subgradient method, International Journal for Numerical Methods in Engineering 40(7) (1997) 1295–1321.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  70. R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton 1972.

    Google Scholar 

  71. D.E. Stewart and J.C. Trinkle, “An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction”, International Journal for Numerical Methods in Engineering 39 (1996) 2673–2691.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  72. N. Strömberg, L. Johansson, A. Klarbring, “Derivation and analysis of a generalized standard model for contact, friction and wear”, International Journal of Solids and Structures 33(13) (1996) 1817–1836.

    Article  MATH  MathSciNet  Google Scholar 

  73. N. Strömberg, “An augmented Lagrangian method for fretting problems”, European Journal of Mechanics/A 16 (1997) 573–593.

    MATH  Google Scholar 

  74. K. Svanberg, “The method of moving asymptotes - A new method for structural optimization”, International Journal for Numerical Methods in Engineering 24 (1987) 359–373.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  75. E. Tonti, “On the mathematical structure of a large class of physical theories” Rendiconti Academia Nationale Dei Lincei LII (1972) 48–56, 350–356.

    MathSciNet  Google Scholar 

  76. J.C. Trinkle, J.S. Pang, S. Sudarsky and G. Lo, “On dynamic multi-rigid-body contact problems with Coulomb friction”, to appear in Zeitschrift für Angewandte Mathematik und Mechanik.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Klarbring, A. (1999). Contact, Friction, Discrete Mechanical Structures and Mathematical Programming. In: Wriggers, P., Panagiotopoulos, P. (eds) New Developments in Contact Problems. International Centre for Mechanical Sciences, vol 384. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2496-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2496-3_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83154-0

  • Online ISBN: 978-3-7091-2496-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics