Skip to main content

Order and Disorder in Granular Materials

Experiment and Theory

  • Conference paper

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 400))

Abstract

Granular avalanches behave like solid bodies, fluids or gases, depending upon the kind of driving forces they are exposed to. Correspondingly, theoretical models concentrate in general on particular aspects of these behaviours. In these notes, we present an overview of phenomena that are observed in granular media under various external loads.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagnold, R. A., 1954. Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. London, A 225, 49–63

    Google Scholar 

  • Bak, P., Chen, K., 1991. Self-organized criticality. Scientific American, 264, 46–54

    Google Scholar 

  • Bak, P., Tang, C., Wiesenfeld, K., 1987. Self-organized criticality: an example of 1/f noise. Phys. Rev. Lett. 59, 381

    MathSciNet  Google Scholar 

  • Biot, M. A., Willis, D. G., 1957. The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601

    MathSciNet  Google Scholar 

  • Biot, M. A., 1935. La problème de la consolidation des matières argileuses sous une charge. Annales de la Societé Scientifique de Bruxelles, B 55, 110–113

    Google Scholar 

  • Biot, M. A., 1941. General theory of three dimensional consolidation. J. Appl. Phys. 12, 155–164

    MATH  Google Scholar 

  • Biot, M. A., 1955. Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182 185

    MathSciNet  Google Scholar 

  • Biot, M. A., 1956. Theory Of propagation of elastic waves in fluid-saturated porous solid. I Low-frequency range. J. Acoust. Soc. Am. 28, 168–178

    MathSciNet  Google Scholar 

  • Biot, M. A., 1962a. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–1498

    MATH  MathSciNet  Google Scholar 

  • Biot, M. A., 1962b. Generalized theory of acoustic propagation in porous dissipative media. J. Acoust. Soc. Am. 34, 1254–1264

    MathSciNet  Google Scholar 

  • Biot, M. A., 1972. Theory of finite deformations in porous solids. Indiana University Math. J. 21, 597–620

    MathSciNet  Google Scholar 

  • Campbell, C. S., Brennen, C. E., 1985. Computer simulation of granular shear flows. J. Fluid Mech. 151, 167–188

    Google Scholar 

  • Campbell, C. S., Gong, A., 1986. The stress tensor in a two-dimensional granular shear flow. J. Fluid Mech. 164, 107–125

    MATH  Google Scholar 

  • Campbell, C. S., 1990. Rapid granular flows. Ann. Rev. Fluid Mech. 22, 57–92

    Google Scholar 

  • Chen C.-L., 1987. Comprehensive review of debris flow modelling concepts in Japan. Geol. Soc. Am. Rev. Eng. Geol. VII, 13–29

    Google Scholar 

  • Clément, E., Rajchenbach, J., 1991. Fluidization of a bidimensional powder, Europhos. Lett. 16 ( 2), 133

    Google Scholar 

  • Coussot, P., 1994. Steady, laminar flow of concentrated mud suspensions in open channels. J. Hydr. Res. 32 (4)

    Google Scholar 

  • Craig, K., Buckholtz, R. H., Domato, G., 1986. An experimental study of the rapid flow of dry cohesionless metal powders. J. Appl. Mech. 53, 935–942

    Google Scholar 

  • Cundall, P. A., Strack, O. D. L., 1979. A discrete numerical model for granular assemblies. Géotechnique, 29 ( 1): 47–65

    Google Scholar 

  • Cundall, P. A., 1988. Numerical experiments on localization in frictional materials. Ingenieur Archiv, 59: 148–159

    Google Scholar 

  • Davies, T. R. H., 1986. Large debris flows: A macro-viscous phenomenon. Acta Mechanica, 63, 161–178

    Google Scholar 

  • Davies, T. R. H., 1988. Debris flow surges - A laboratory investigation. Mitteilung No. 96 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH, 122 pp.

    Google Scholar 

  • de Boer, R., 1996. Highlights in the historical development of the porous media theory. Appl. Mech. Rev. 49, 201–262

    Google Scholar 

  • Dent, J. D., 1986. Flow properties of granular materials large overburden loads. Acta Mechanica 64, 111–122

    Google Scholar 

  • Dury, C. M., Ristow, G. H., Moss, L. J. and Nakagawa, M., 1998. Phys. Rev. E., 57, (4), 4491–4497

    Google Scholar 

  • Erismann, T. H., 1979. Mechanisms of large landslides. Rock Mechanics 12, 15–46

    Google Scholar 

  • Erismann, T., 1986. Flowing, rolling, bouncing, sliding: Synopsis of basic mechanisms. Acta Mechanica 64, 101–110

    Google Scholar 

  • Evesque, P., Rajchenbach, J., 1988. Characterization of glass beard avalanches by using the technique of a rotating cylinder. C. R. Acad.Sci. Paris, Serie 11307, 223

    Google Scholar 

  • Fauve, S., Laroche, C., Douday, S., 1991. Dynamics of avalanches in a rotating cylinder. In: Physics of Granular Media (Bideau, D., Dodds, J. eds), Nova Science Publishers, Commack, N. Y., p. 277

    Google Scholar 

  • Fillunger, P., 1913. Der Auftrieb in Talsperren. Österr. Wochenschrift für den öffentl. Baudienst, 19, 532 —556, 567–570

    Google Scholar 

  • Fillunger, P., 1914. Neuere Grundlagen für die statische Berechnung von Talsperren. Zeitschrift des Österr. Ing.- und Architektenvereins, 23, 444–447

    Google Scholar 

  • Fillunger, P., 1915. Versuche über die Zugfestigkeit bei allseitigem Wasserdruck. Österr. Wochenschrift für den öffentl. Baudienst, H 29, 443–448

    Google Scholar 

  • Fillunger, P., 1929. Auftrieb und Unterdruck in Talsperren. Die Wasserwirtschaft, 22, 334–336, 371–377, 388–390

    Google Scholar 

  • Fillunger, P., 1930. Zur Frage des Auftriebs in Talsperren. Die Wasserwirtschaft, 23, 63–66

    Google Scholar 

  • Fillunger, P., 1934. Nochmals der Auftrieb in Talsperren. Zeitschrift des Österr. Ing.- und Architektenvereins, Heft 5 /6

    Google Scholar 

  • Fillunger, P., 1934. Die wirksame Flächenporosität Prof. Terzaghis, Zeitschrift des Österr. Ing.und Architektenvereins, Heft 7 /8, 44–45

    Google Scholar 

  • Fillunger, P., 1934. Der Kapillardruck in Talsperren. Die Wasserwirtschaft, 27, 129–131

    Google Scholar 

  • Fillunger, P., 1935. Neue Festigkeitslehre, Selbstverlag des Verfassers, Wien

    Google Scholar 

  • Fillunger, P., 1936. Erdbaumechanik? Selbstverlag des Verfassers, Wien

    Google Scholar 

  • Fillunger, P., 1937. Erdbaumechanik und Wissenschaft: Eine Erwiderung (ed. Erwin Fillunger), Selbstverlag des Verfassers, Wien

    Google Scholar 

  • Goddard, J. D., 1986. Dissipative materials as constitutive models for granular media. Acta Mechanica, 63: 3–13

    MATH  Google Scholar 

  • Goguel, J., 1978. Scale dependent rockslide mechanisms. In Rockslides and Avalanches, Vol. 1 (ed. B. Voight ), Elsevier, 167–180

    Google Scholar 

  • Goodman, M. A., Cowin, S. C., 1971. Two problems in the gravity flow of granular materials. J. Fluid Mech. 45: 321–339

    MATH  Google Scholar 

  • Goodman, M. A., Cowin, S. C., 1972. A continuum theory for granular materials. Arch. Rational. Mech. Anal. 44 ( 4): 249–266

    MATH  Google Scholar 

  • Gray, J. M. N. T., Hutter, K., 1997. Pattern formation in granular avalanches. Continuum Mech. Thermodyn, 9, 341–345

    Google Scholar 

  • Gray, J. M. N. T., Hutter, K., 1998. Physik granularer Lawinen, Physikalische Blätter, 54 ( 1), 37–43

    Google Scholar 

  • Gray, J. M. N. T., Tai, Y. C., 1998. On the inclusion of a velocity dependent basal drag in avalanche models, Annals of Glaciology,25 (in press)

    Google Scholar 

  • Gray, J. M. N. T., Wieland, M., Hutter, K., 1998. Gravity driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. London (in press)

    Google Scholar 

  • Greve, R. and Hutter, K., 1993. The motion of a granular avalanche in a convex and concave curved chute: Experiments and theoretical predictions, Phil. Trans. R. Soc. London A 342, 573–604

    Google Scholar 

  • Greve, R., Koch, T. and Hutter, K., 1993. Unconfined flow of granular avalanches along a partly curved surface. Part I: Theory. Proc. R. Soc. London A 445, 399–413

    Google Scholar 

  • Hair, P. K., 1983. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401–430

    Google Scholar 

  • Hanes, D. M., Inman, D. L., 1985. Observations of rapidly flowing granular-fluid mixtures.J. Fluid Mech. 150, 357–380

    Google Scholar 

  • Heim, A., 1882: Der Bergsturz von Elm. Deutsch Geol. Gesell. Zeitschrift 34, 74–115

    Google Scholar 

  • Heim, A., 1932. Bergsturz und Menschenleben. Beiblatt zur Vierteljahresschrift der Natf. Ges. Zürich, 20, 1–218

    Google Scholar 

  • Herrmann, H. J., Luding, S., 1998. Modelling granular media on the computer Continuum Mech. Thermodyn. 10, 1–48

    Google Scholar 

  • Hsü, K., 1975. On sturzstroms–catastrophic debris streams generated by rockfalls. Geol. Soc. Am. Bull. 86, 129–140

    Google Scholar 

  • Hsü, K., 1978. Albert Heim: Observations on landslides and relevance to modern interpretations. In Rockslides and Avalanches, Vol. 1 (ed. B. Voight ), Elsevier, 69–93

    Google Scholar 

  • Hutter, K., 1989. A continuum model for finite mass avalanches having shear-flow and plug-flow regime. Internal report. Federal Institute of Snow and Avalanche Research, Weissfluhjoch, Davos

    Google Scholar 

  • Hutter, K., 1991. Two-and three-dimensional evolution of granular avalanche flow–theory and experiments revisited. Acta Mechanica, (Suppl.), 1, 167–181

    Google Scholar 

  • Hutter, K., 1992. Lawinen– Dynamik — eine Übersicht. Der Maschinenschaden, 92 (5), 181–191

    Google Scholar 

  • Hutter, K., 1996. Avalanche Dynamics, In: Hydrology of Disasters ( Singh, V. P., ed). Kluwer Academic Publ. Dordrecht-Boston-London, pp. 317–394

    Google Scholar 

  • Hutter, K. and Greve, R., 1993. Two-dimensional similarity solutions for finite mass granular avalanches with Coulomb and viscous-type frictional resistance. J. Glaciology, 39, 357–372

    Google Scholar 

  • Hutter, K. and Koch, T., 1991. Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Phil. Trans. R. Soc. London, A 334, 93–138

    Google Scholar 

  • Hutter, K., Koch, T., Plüss, C. and Savage, S. B., 1993. Dynamics of avalanches of granular materials from initiation to runout Part II. Laboratory experiments, Acta Mechanica, 109, 127–165

    Google Scholar 

  • Hutter, K., Laloui, L., Vulliet, L., 1998. Thermodynamically based mixture models of saturated and unsaturated soils. Mech. Cohesive-Frictional Mat (in press)

    Google Scholar 

  • Hutter, K. and Nohguchi, Y., 1990. Similarity solutions for a Voellmy model of snow avalanches with finite mass. Acta Mechanica, 82, 99–127

    MATH  Google Scholar 

  • Hutter, K., Rajagopal, K. R. 1994. On flows of granular materials. Continuum Mech. Thermodyn., 6, 81–139

    MATH  MathSciNet  Google Scholar 

  • Hutter, K., Siegel, M., Savage, S. B. and Nohguchi, Y., 1993. Two dimensional spreading of a granular avalanche down an inclined plane, Part I. Theory. Acta Mechanica, 100, 37–68

    MATH  MathSciNet  Google Scholar 

  • Hutter, K., Svendsen, B., Rickenmann, D., 1996. Debris flow modelling: A review. Continuum Mech. Thermodyn. 8, 1–35

    MATH  MathSciNet  Google Scholar 

  • Hutter, K., Szidarovsky, F. and Yakowitz, S., 1986. Plane steady shear flow of a cohesionless granular material down an inclined plane: a model for flow avalanches, Part I. Theory. Acta Mechanica, 63, 87–112

    MATH  Google Scholar 

  • Hutter, K., Szidarovsky, F. and Yakowitz, S., 1986. Plane steady shear flow of a cohesionless granular material down an inclined plane: a model for flow avalanches, Part II. Numerical results. Acta Mechanica, 65, 239–261

    Google Scholar 

  • Hwang, H. and Hutter, K., 1995. A new kinetic model for rapid granular flow. Continuum Mech. Thermodyn. 7: 357–384

    MATH  MathSciNet  Google Scholar 

  • Iverson, R. M., 1997a. Hydraulic modelling of unsteady debris—flow surges with solid—fluid interactions. In: Proceeding of the first International Conference on Debris flow Hazards Mitigation. Am. Soc. Civ. Eng. Water Resources Eng. Div. 550–560

    Google Scholar 

  • Iverson, R. M., 1997b. The Physics of debris flows. Reviews of Geophysics, 35 (3): 245–296

    Google Scholar 

  • Iverson, R. M., Denlinger, R. P., 1987. The physics of debris flows–a conceptual assessment. Erosion and Sedimentation in the Pacific Rim (Proceedings of the Corvallis Symposium), IAHS Publ. No. 165: 155–165

    Google Scholar 

  • Iverson, R. M., Reid, M. C., Lattuslu, R. G. 1997. Debris-flow mobilization from landslides. Annal Reviews, Earth Planet. Sci. 25: 85–138

    Google Scholar 

  • Jaeger, H. M., Nagel, S. R., 1992. Physics of the granular state. Science, 255, 1523–1531

    Google Scholar 

  • Jenkins, J. T., Richman, M. W., 1985. Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Rat. Mech. Anal. 87, 355–377

    MATH  MathSciNet  Google Scholar 

  • Jenkins, J. T., Richman, M. W., 1985. Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485–3494

    MATH  Google Scholar 

  • Jenkins, J. T., Richman, M. W., 1986. Boundary conditions for plane flows of smooth nearly elastic, circular disks. J. Fluid Mech. 171, 53–69

    MATH  Google Scholar 

  • Jenkins, J. T., Savage, S. B., 1983. A theory for the rapid flow of identical, smooth, nearly elastic particles. J. Fluid Mech. 130, 186–202

    Google Scholar 

  • Kent, P. E., 1965. The transport mechanism in catastrophic rockfalls. J. Geol. 74, 79–83

    Google Scholar 

  • Knight, J., Jaeger, H., Nagel, S., 1993. Vibration-induced size separation in granular media: The convection connection, Phys. Rev. Lett. 70, 3728

    Google Scholar 

  • Koch, T., 1989. Bewegung einer Granulatlawine entlang einer gekriimmten Bahn. Diplomarbeit, Technische Hochschule Darmstadt, 172 pp

    Google Scholar 

  • Koch, T., 1994. Bewegung einer granularen Lawine auf einer geneigten and gekrümmten Fläche. Entwicklung and Anwendung eines theoretisch numerischen Verfahrens and dessen Überprüfung durch Laborexperimente. Doctoral dissertation, Technische Hochschule Darmstadt

    Google Scholar 

  • Koch, T., Greve, R. and Hutter, K., 1994. Unconfined flow of granular avalanches along a partly curved surface. Part II: Experiments and numerical computations. Proc. R. Soc. London, A 445, 415–435

    MATH  Google Scholar 

  • Kolymbas, D., 1998. Behaviour of liquefied sand, Phil. Trans. R. Soc. London (in press)

    Google Scholar 

  • Kolymbas, D., 1998. Geotechnik - Bodenmechanik and Grundbau. Springer Berlin etc. 423 p.

    Google Scholar 

  • Liu, K. F., Mei,C. C., 1989a. Effect of wave-induced friction on a muddy seabed modelled as a Bingham-plastic fluid. J. Coastal Res. 15 (4): 777–787

    Google Scholar 

  • Liu, K. F., Mei, C. C., 1989b. Slow spreading of a sheet of mud. J. Fluid Mech. 207: 505–529

    MATH  Google Scholar 

  • Liu, K. F., Mei, C. C., 1990. Approximate equations for the slow spreading of a thin sheet of Bingham-plastic fluid. Physics of Fluids 2 ( 1): 30–36

    MATH  Google Scholar 

  • Liu, K. F., Mei, C. C., 1994. Roll waves on a layer of muddy fluid flowing down a gentle slope–a Bingham model. Physics of Fluids A6 ( 8): 2577–2590

    MATH  Google Scholar 

  • Lucchitta, B. K., 1978. A large landslide on Mars. Geol. Soc. Amer. Bull. 89, 1601–1609

    Google Scholar 

  • Luding, S., 1997. Die Physik kohäsionsloser granularer Medien. Habilitationsschrift, Fakultät für Physik, Universität Stuttgart, pp 1–195 (unveröffentlicht)

    Google Scholar 

  • Lun, C. K. K., Savage, S. B., 1987. A simple kinetic theory for granular flow of rough, inelastic, spherical particles. J. Appl. Mech. 54, 47–53

    MATH  Google Scholar 

  • Lun, C. K. K., Savage, S. B., Jeffrey, D. J., Chepurniy, N., 1984. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 140, 223–256

    MATH  Google Scholar 

  • McCarthy, J. J., Wolf, J. E., Shinbrot, T., Metcalfe, G., 1996. Mixing of granular materials in slowly rotated containers, AICHE, 42, 3351–3363

    Google Scholar 

  • Mei, C. C., Liu,K. F., 1987. A Bingham-plastic model for a muddy seabed under long waves. J. Geophys. Res. 92 ( 13): 14581–1459

    Google Scholar 

  • Melosh, J., 1986. The physics of very large landslides. Acta Mechanica 64, 89–99

    Google Scholar 

  • Metcalfe, G. Shinbrot, T., McCarthy, J. J., Ottino, J. M., 1995. Avalanche mixing of granular solids. Nature, 374, 39–41

    Google Scholar 

  • Middleton, G. V., Hampton, M. A., 1976. Subaqueous sediment transport and deposition by sediment gravity flows. In: Marine Sediment Transport and Environmental Management, (eds. D. J. Stanley, D. J. P. Swift), 197–218, Wiley, N. Y.

    Google Scholar 

  • Middleton, G. V., 1970. Experimental studies related to problem of flush sedimentation. In: Flysch Sedimentology in North America (Lajoie, ed). Business and Economics Science Ltd., Toronto, 253–272

    Google Scholar 

  • Middleton, G. V., 1970. Experimental studies related to problems of Flysch sedimentation. In Flysch Sedimentology in North America (ed. J. Lajoie), 253–72. Geol. Assoc. Can. Spec. Rep. 7

    Google Scholar 

  • Naylor, M. A., 1980. The origin of inverse grading in muddy debris flow deposits–A review. J. Sedimentary Petrology, 500 111–1116

    Google Scholar 

  • Norem, H., Irgens, F., Schieldrop, B. A., 1987. A continuum model for calculating snow avalanches, in: Avalanche Formation, Movement and Effects (Salm, B., Gubler, H. Eds). IAHS Publ. No. 126: 363–379

    Google Scholar 

  • O’Brien, J. S., Julien, P. Y., Fullerton, W. T., 1993. Two-dimensional water flood and mudflow simulation. J. Hydr. Eng. ASCE, 199 ( 2): 244–261

    Google Scholar 

  • Passman, S. L., Nunziato, J. W., Bailey, P. B., Thomas, J. B., 1980. Shearing flows of granular materials. J. Eng. Mech. Division, ASCE, 106, 773–783

    Google Scholar 

  • Perla, R. and Martinelli, M., 1978. Avalanche Handbook, U. S. Department of Agriculture Forest Service, Agriculture Handbook, 489 pp.

    Google Scholar 

  • Perla, R., 1980. Avalanche release, motion and impact, in: Dynamics of Snow and Ice Masses ( S. C. Colbeck, ed.), Academic Press, New York, 397–462

    Google Scholar 

  • Perla, R., Cheng, T. T. and McClung, D. M., 1980. A two parameter model of snow avalanche motion, Journal of Glaciology, 26, Nr. 94, 197–202

    Google Scholar 

  • Reynolds, 0., 1885. On the dilatancy of media composed of rigid particles in contact. Phil. Mag. Ser. 5 (20), 469–481

    Google Scholar 

  • Ristow, G. H., 1998. Flow properties of granular materials. Habilitationsschrift, Fachbereich Physik, Philipps-Universität Marburg, pp. 1–111

    Google Scholar 

  • Rosato, A. D., Prinz, F., Strandburg, K. J., Swendsen, R., 1986. Monte Carlo simulation of particulate matter segregation, Powder Technol., 49, 59

    Google Scholar 

  • Rosato, A. D., Strandburg, K. J., Prinz, F., Swendsen, R. W., 1987. Why the Brazil nuts are on top: Size segregation of particle matter by shaking. Phys. Rev. Lett. 58: 10–38

    MathSciNet  Google Scholar 

  • Sallenger, A. H., 1979. Inverse grading and hydraulic equivalence in grain-flow deposits. J. Sedimentary Petrology, 49, 553–562

    Google Scholar 

  • Salm, B., 1968. On nonuniform, steady flow of avalanching snow, Union de Gdodesie et Géophysique Internationale, Association Internationale d’Hydrologie Scientifique, Assembles générale de Berne, 25 Sept - 7 Oct 1967 (Commission de Neiges et Glaces), Rapports et discussions, 19–29, (Publication No. 79 de l’Association Internationale d’Hydrologic Scientifique)

    Google Scholar 

  • Savage, S. B., 1979. Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92, 53–96

    MATH  Google Scholar 

  • Savage, S. B., 1983. Granular flows down rough inclines–review and extension. Mech. of Granular Materials: New Models and Constitutive Relations (eds. J. T. Jenkins, M. Satake ), Elsevier, 261–82

    Google Scholar 

  • Savage, S. B., 1984. The mechanics of rapid granular flows. Advances in Applied Mechanics, 24 (eds. T. Y. Wu, J. Huchinson ), Academic, 289–366.

    Google Scholar 

  • Savage, S. B., 1989. Flow of granular materials. Theoretical and Applied Mechanics (eds. P. Germain, M. Piau, D. Caillierie ), Elsevier, 241–266

    Google Scholar 

  • Savage, S. B., 1993. Mechanics of granular flows, in: Continuum Mechanics in Environmental Sciences and Geophysics, CISM Lectures No. 337 (ed. K. Hutter, Springer Verlag, Wien-New York, pp. 467 -’522

    Google Scholar 

  • Savage, S. B., Jeffrey, D. J., 1981. The stress tensor in a granular flow at high shear rates. J. Fluid Mech. 110, 255–272

    MATH  Google Scholar 

  • Savage, S. B., Lun, C. K. K., 1988. Particle size segregation in inclined chute flow of dry cohesionless granular solids, J. Fluid Mech. 189, 311–335

    Google Scholar 

  • Savage, S. B., Sayed, M., 1984. Stresses developed by dry cohesionless granular materials sheared in an annular shear cell. J. Fluid Mech. 142, 391–430

    Google Scholar 

  • Savage, S. B. and Hutter, K., 1989. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215

    MATH  MathSciNet  Google Scholar 

  • Savage, S. B. and Hutter, K., 1991. The dynamics of avalanches of granular materials from initiation to runout. Part: Analysis. Acta Mechanica, 86, 201–223

    MATH  MathSciNet  Google Scholar 

  • Shreve, R. L., 1966. Sherman landslide, Alaska, Science 154, 1639–1643

    Google Scholar 

  • Shreve, R. L., 1968a. The Blackhawk Landslide. Geol. Soc. Am., Spec. Paper 108, 47 pp.

    Google Scholar 

  • Shreve, R. L., 1968b. Leakage and fluidization in air-lubricated avalanches. Geol. Soc. Am. Bull. 79, 653–658

    Google Scholar 

  • Stadler, R., Buggisch, H., 1985. Influence of the deformation rate on shear stress in bulk solids, theoretical aspects and experimental results.Reliable Flow of Particulate Solids, (EFCE Publication Series No. 49, Bergen, Norway), pp. 15

    Google Scholar 

  • Stadler, R., 1986. Stationäres, schnelles Fliessen von dicht gepackten trockenen and feuchten Schüttgütern. Dr.-Ing. Dissertation, Univ. Karlsruhe, West Germany

    Google Scholar 

  • Straub, Stephen, 1994. Schnelles granulares Fließen in subaerischen pyroklastischen Strömen. Dissertation, Bayerische Julius-Maximilians-Universität Würzburg

    Google Scholar 

  • Svendsen, B., Hutter, K., 1995. On the thermodynamics of a mixture of isotropic materials with constraints. Int. J. Engng. Sci. 33, 2021–2054

    MATH  MathSciNet  Google Scholar 

  • Tai, Y. C., Gray, J. M. N. T, 1998. Limiting stress states in granular avalanches, Annals of Glaciology,25 (in press)

    Google Scholar 

  • Takahashi, T., 1981. Debris flow. Ann. Rev. Fluid Mech. 13, 57–77

    Google Scholar 

  • Takahashi, T., 1983. Debris flow and debris flow deposition. In: Advances in the Mechanics and Flow of Granular Materials, Vol. II (M. Shalinpoor, ed.), Trans. Tech. Publ., 57–77

    Google Scholar 

  • Takahashi, T., 1991. Debris flow. International, Association for Hydraulic Research (IAHR), Monograph, A. A. Belkema, Rotterdam-Brookfield

    Google Scholar 

  • Vanel, L., Rosato, A. D. and Dave, R., 1997. Rise-time regimes of a large sphere in vibrated bulk solids, Phys. Rev. Lett. 78, 1255

    Google Scholar 

  • Voellmy, A., 1955. Über die Zerstörungskraft von Lawinen, Schweizerische Bauzeitung, Jahrg. 73, Hf 12, 159–62

    Google Scholar 

  • English translation: On the destructive force of avalanches, U. S. Department of Agriculture, Forest Service, Alta Avalanche Study Center Translation No. 2, 1964 )

    Google Scholar 

  • Von Terzaghi, K., Fröhlich, O. K., 1936. Theorie der Setzungen von Tonschichten. Franz Deuticke, Leipzig-Wien

    Google Scholar 

  • Von Terzaghi, K., Fröhlich, O. K., 1937. Erdbaumechanik und Baupraxis. Eine Klarstellung. Franz Deuticke, Leipzig-Wien

    Google Scholar 

  • Von Terzaghi, K., Peck, R. B., 1948. Soil Mechanics in Engineering Practice. Wiley, New York

    Google Scholar 

  • Von Terzaghi, K., 1923. Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen, Akademie der Wissenschaften in Wien, Sitzungsberichte. Math.-naturwiss. Klasse Abt. V a, 132 (3/4) 125–138

    Google Scholar 

  • Von Terzaghi, K., 1924. Die Theorie der hydrodynamischen Spannungserscheinungen und ihr erdbautechnisches Anwendungsgebiet, Proc. of the First International Congress of Applied Mechanics, Delft, 288–294

    Google Scholar 

  • Von Terzaghi, K., 1925. Erdbaumechanik auf bodenphysikalischer Grundlage, Franz Deuticke, Leipzig-Wien

    MATH  Google Scholar 

  • Von Terzaghi, K., 1931. Festigkeitseigenschaften der Schüttungen, Sedimente und Gele, in: Handbuch der phys. und techn. Mechanik, Band IV, 513–578

    Google Scholar 

  • Von Terzaghi, K., 1933. Auftrieb und Kapillardruck an betonierten Talsperren. Die Wasserwirtschaft, 26, 397–399

    Google Scholar 

  • Von Terzaghi, K., 1943. Theoretical Soil Mechanics. Wiley, New York

    Google Scholar 

  • Walton, O. R., Braun, R. L., 1986. Viscosity and temperature calculations for assemblies of inelastic frictional disks. J. Rheology, 30, 949–980

    Google Scholar 

  • Walton, O. R., Braun, R. L., Mallon, R. G., Cervelli, D. M., 1987. Particle-dynamics calculations of gravity flow of inelastic, frictional spheres. Micromechanics of Granular Materials (eds. M. Satake, J. T. Jenkins ), Elsevier, 153–162

    Google Scholar 

  • Walton, O.R., Kim, H., Rosato, A., 1991. Micro-structure and stress difference in shearing flows of granular materials. Proc. ASCE Eng. Mech. Div. Conf., Columbus, Ohio, May 19–21, 1991

    Google Scholar 

  • Wang, Y., Hutter, K., 1998. Shearing flows in a Goodman-Cowin type granular material - Theory and numerical results. J. Particulate Matter (in press)

    Google Scholar 

  • Wieghardt, K., 1975. Experiments in granular flow. Ann. Rev. Fluid Mech. 7, 89–114

    Google Scholar 

  • Wieland, M., Gray, J. M. N. T., Huter, K., 1998. Channelized free surface flow of cohesionless granular avalanche in a chute with shallow lateral curvature. J. Fluid Mech. ( submitted)

    Google Scholar 

  • Williams, J. C., 1976. The segregation of particular materials, a review, Powder Technol. 15, 245

    Google Scholar 

  • Wilmanski, K., 1997. The thermodynamical model of compressible porous materials with the balance equation of porosity. Preprint 310, Weierstraß Institut für Angewandte Analysis und Stochastik, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Hutter, K. (1999). Order and Disorder in Granular Materials. In: Hutter, K., Wilmanski, K. (eds) Kinetic and Continuum Theories of Granular and Porous Media. International Centre for Mechanical Sciences, vol 400. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2494-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2494-9_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83146-5

  • Online ISBN: 978-3-7091-2494-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics