Order and Disorder in Granular Materials

Experiment and Theory
  • K. Hutter
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 400)


Granular avalanches behave like solid bodies, fluids or gases, depending upon the kind of driving forces they are exposed to. Correspondingly, theoretical models concentrate in general on particular aspects of these behaviours. In these notes, we present an overview of phenomena that are observed in granular media under various external loads.


Debris Flow Granular Material Incline Plane Solid Volume Fraction Internal Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bagnold, R. A., 1954. Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. London, A 225, 49–63Google Scholar
  2. Bak, P., Chen, K., 1991. Self-organized criticality. Scientific American, 264, 46–54Google Scholar
  3. Bak, P., Tang, C., Wiesenfeld, K., 1987. Self-organized criticality: an example of 1/f noise. Phys. Rev. Lett. 59, 381MathSciNetGoogle Scholar
  4. Biot, M. A., Willis, D. G., 1957. The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601MathSciNetGoogle Scholar
  5. Biot, M. A., 1935. La problème de la consolidation des matières argileuses sous une charge. Annales de la Societé Scientifique de Bruxelles, B 55, 110–113Google Scholar
  6. Biot, M. A., 1941. General theory of three dimensional consolidation. J. Appl. Phys. 12, 155–164MATHGoogle Scholar
  7. Biot, M. A., 1955. Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182 185MathSciNetGoogle Scholar
  8. Biot, M. A., 1956. Theory Of propagation of elastic waves in fluid-saturated porous solid. I Low-frequency range. J. Acoust. Soc. Am. 28, 168–178MathSciNetGoogle Scholar
  9. Biot, M. A., 1962a. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–1498MATHMathSciNetGoogle Scholar
  10. Biot, M. A., 1962b. Generalized theory of acoustic propagation in porous dissipative media. J. Acoust. Soc. Am. 34, 1254–1264MathSciNetGoogle Scholar
  11. Biot, M. A., 1972. Theory of finite deformations in porous solids. Indiana University Math. J. 21, 597–620MathSciNetGoogle Scholar
  12. Campbell, C. S., Brennen, C. E., 1985. Computer simulation of granular shear flows. J. Fluid Mech. 151, 167–188Google Scholar
  13. Campbell, C. S., Gong, A., 1986. The stress tensor in a two-dimensional granular shear flow. J. Fluid Mech. 164, 107–125MATHGoogle Scholar
  14. Campbell, C. S., 1990. Rapid granular flows. Ann. Rev. Fluid Mech. 22, 57–92Google Scholar
  15. Chen C.-L., 1987. Comprehensive review of debris flow modelling concepts in Japan. Geol. Soc. Am. Rev. Eng. Geol. VII, 13–29Google Scholar
  16. Clément, E., Rajchenbach, J., 1991. Fluidization of a bidimensional powder, Europhos. Lett. 16 ( 2), 133Google Scholar
  17. Coussot, P., 1994. Steady, laminar flow of concentrated mud suspensions in open channels. J. Hydr. Res. 32 (4)Google Scholar
  18. Craig, K., Buckholtz, R. H., Domato, G., 1986. An experimental study of the rapid flow of dry cohesionless metal powders. J. Appl. Mech. 53, 935–942Google Scholar
  19. Cundall, P. A., Strack, O. D. L., 1979. A discrete numerical model for granular assemblies. Géotechnique, 29 ( 1): 47–65Google Scholar
  20. Cundall, P. A., 1988. Numerical experiments on localization in frictional materials. Ingenieur Archiv, 59: 148–159Google Scholar
  21. Davies, T. R. H., 1986. Large debris flows: A macro-viscous phenomenon. Acta Mechanica, 63, 161–178Google Scholar
  22. Davies, T. R. H., 1988. Debris flow surges - A laboratory investigation. Mitteilung No. 96 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH, 122 pp.Google Scholar
  23. de Boer, R., 1996. Highlights in the historical development of the porous media theory. Appl. Mech. Rev. 49, 201–262Google Scholar
  24. Dent, J. D., 1986. Flow properties of granular materials large overburden loads. Acta Mechanica 64, 111–122Google Scholar
  25. Dury, C. M., Ristow, G. H., Moss, L. J. and Nakagawa, M., 1998. Phys. Rev. E., 57, (4), 4491–4497Google Scholar
  26. Erismann, T. H., 1979. Mechanisms of large landslides. Rock Mechanics 12, 15–46Google Scholar
  27. Erismann, T., 1986. Flowing, rolling, bouncing, sliding: Synopsis of basic mechanisms. Acta Mechanica 64, 101–110Google Scholar
  28. Evesque, P., Rajchenbach, J., 1988. Characterization of glass beard avalanches by using the technique of a rotating cylinder. C. R. Acad.Sci. Paris, Serie 11307, 223Google Scholar
  29. Fauve, S., Laroche, C., Douday, S., 1991. Dynamics of avalanches in a rotating cylinder. In: Physics of Granular Media (Bideau, D., Dodds, J. eds), Nova Science Publishers, Commack, N. Y., p. 277Google Scholar
  30. Fillunger, P., 1913. Der Auftrieb in Talsperren. Österr. Wochenschrift für den öffentl. Baudienst, 19, 532 —556, 567–570Google Scholar
  31. Fillunger, P., 1914. Neuere Grundlagen für die statische Berechnung von Talsperren. Zeitschrift des Österr. Ing.- und Architektenvereins, 23, 444–447Google Scholar
  32. Fillunger, P., 1915. Versuche über die Zugfestigkeit bei allseitigem Wasserdruck. Österr. Wochenschrift für den öffentl. Baudienst, H 29, 443–448Google Scholar
  33. Fillunger, P., 1929. Auftrieb und Unterdruck in Talsperren. Die Wasserwirtschaft, 22, 334–336, 371–377, 388–390Google Scholar
  34. Fillunger, P., 1930. Zur Frage des Auftriebs in Talsperren. Die Wasserwirtschaft, 23, 63–66Google Scholar
  35. Fillunger, P., 1934. Nochmals der Auftrieb in Talsperren. Zeitschrift des Österr. Ing.- und Architektenvereins, Heft 5 /6Google Scholar
  36. Fillunger, P., 1934. Die wirksame Flächenporosität Prof. Terzaghis, Zeitschrift des Österr. Ing.und Architektenvereins, Heft 7 /8, 44–45Google Scholar
  37. Fillunger, P., 1934. Der Kapillardruck in Talsperren. Die Wasserwirtschaft, 27, 129–131Google Scholar
  38. Fillunger, P., 1935. Neue Festigkeitslehre, Selbstverlag des Verfassers, WienGoogle Scholar
  39. Fillunger, P., 1936. Erdbaumechanik? Selbstverlag des Verfassers, WienGoogle Scholar
  40. Fillunger, P., 1937. Erdbaumechanik und Wissenschaft: Eine Erwiderung (ed. Erwin Fillunger), Selbstverlag des Verfassers, WienGoogle Scholar
  41. Goddard, J. D., 1986. Dissipative materials as constitutive models for granular media. Acta Mechanica, 63: 3–13MATHGoogle Scholar
  42. Goguel, J., 1978. Scale dependent rockslide mechanisms. In Rockslides and Avalanches, Vol. 1 (ed. B. Voight ), Elsevier, 167–180Google Scholar
  43. Goodman, M. A., Cowin, S. C., 1971. Two problems in the gravity flow of granular materials. J. Fluid Mech. 45: 321–339MATHGoogle Scholar
  44. Goodman, M. A., Cowin, S. C., 1972. A continuum theory for granular materials. Arch. Rational. Mech. Anal. 44 ( 4): 249–266MATHGoogle Scholar
  45. Gray, J. M. N. T., Hutter, K., 1997. Pattern formation in granular avalanches. Continuum Mech. Thermodyn, 9, 341–345Google Scholar
  46. Gray, J. M. N. T., Hutter, K., 1998. Physik granularer Lawinen, Physikalische Blätter, 54 ( 1), 37–43Google Scholar
  47. Gray, J. M. N. T., Tai, Y. C., 1998. On the inclusion of a velocity dependent basal drag in avalanche models, Annals of Glaciology,25 (in press)Google Scholar
  48. Gray, J. M. N. T., Wieland, M., Hutter, K., 1998. Gravity driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. London (in press)Google Scholar
  49. Greve, R. and Hutter, K., 1993. The motion of a granular avalanche in a convex and concave curved chute: Experiments and theoretical predictions, Phil. Trans. R. Soc. London A 342, 573–604Google Scholar
  50. Greve, R., Koch, T. and Hutter, K., 1993. Unconfined flow of granular avalanches along a partly curved surface. Part I: Theory. Proc. R. Soc. London A 445, 399–413Google Scholar
  51. Hair, P. K., 1983. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401–430Google Scholar
  52. Hanes, D. M., Inman, D. L., 1985. Observations of rapidly flowing granular-fluid mixtures.J. Fluid Mech. 150, 357–380Google Scholar
  53. Heim, A., 1882: Der Bergsturz von Elm. Deutsch Geol. Gesell. Zeitschrift 34, 74–115Google Scholar
  54. Heim, A., 1932. Bergsturz und Menschenleben. Beiblatt zur Vierteljahresschrift der Natf. Ges. Zürich, 20, 1–218Google Scholar
  55. Herrmann, H. J., Luding, S., 1998. Modelling granular media on the computer Continuum Mech. Thermodyn. 10, 1–48Google Scholar
  56. Hsü, K., 1975. On sturzstroms–catastrophic debris streams generated by rockfalls. Geol. Soc. Am. Bull. 86, 129–140Google Scholar
  57. Hsü, K., 1978. Albert Heim: Observations on landslides and relevance to modern interpretations. In Rockslides and Avalanches, Vol. 1 (ed. B. Voight ), Elsevier, 69–93Google Scholar
  58. Hutter, K., 1989. A continuum model for finite mass avalanches having shear-flow and plug-flow regime. Internal report. Federal Institute of Snow and Avalanche Research, Weissfluhjoch, Davos Google Scholar
  59. Hutter, K., 1991. Two-and three-dimensional evolution of granular avalanche flow–theory and experiments revisited. Acta Mechanica, (Suppl.), 1, 167–181Google Scholar
  60. Hutter, K., 1992. Lawinen– Dynamik — eine Übersicht. Der Maschinenschaden, 92 (5), 181–191Google Scholar
  61. Hutter, K., 1996. Avalanche Dynamics, In: Hydrology of Disasters ( Singh, V. P., ed). Kluwer Academic Publ. Dordrecht-Boston-London, pp. 317–394Google Scholar
  62. Hutter, K. and Greve, R., 1993. Two-dimensional similarity solutions for finite mass granular avalanches with Coulomb and viscous-type frictional resistance. J. Glaciology, 39, 357–372Google Scholar
  63. Hutter, K. and Koch, T., 1991. Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Phil. Trans. R. Soc. London, A 334, 93–138Google Scholar
  64. Hutter, K., Koch, T., Plüss, C. and Savage, S. B., 1993. Dynamics of avalanches of granular materials from initiation to runout Part II. Laboratory experiments, Acta Mechanica, 109, 127–165Google Scholar
  65. Hutter, K., Laloui, L., Vulliet, L., 1998. Thermodynamically based mixture models of saturated and unsaturated soils. Mech. Cohesive-Frictional Mat (in press)Google Scholar
  66. Hutter, K. and Nohguchi, Y., 1990. Similarity solutions for a Voellmy model of snow avalanches with finite mass. Acta Mechanica, 82, 99–127MATHGoogle Scholar
  67. Hutter, K., Rajagopal, K. R. 1994. On flows of granular materials. Continuum Mech. Thermodyn., 6, 81–139MATHMathSciNetGoogle Scholar
  68. Hutter, K., Siegel, M., Savage, S. B. and Nohguchi, Y., 1993. Two dimensional spreading of a granular avalanche down an inclined plane, Part I. Theory. Acta Mechanica, 100, 37–68MATHMathSciNetGoogle Scholar
  69. Hutter, K., Svendsen, B., Rickenmann, D., 1996. Debris flow modelling: A review. Continuum Mech. Thermodyn. 8, 1–35MATHMathSciNetGoogle Scholar
  70. Hutter, K., Szidarovsky, F. and Yakowitz, S., 1986. Plane steady shear flow of a cohesionless granular material down an inclined plane: a model for flow avalanches, Part I. Theory. Acta Mechanica, 63, 87–112MATHGoogle Scholar
  71. Hutter, K., Szidarovsky, F. and Yakowitz, S., 1986. Plane steady shear flow of a cohesionless granular material down an inclined plane: a model for flow avalanches, Part II. Numerical results. Acta Mechanica, 65, 239–261Google Scholar
  72. Hwang, H. and Hutter, K., 1995. A new kinetic model for rapid granular flow. Continuum Mech. Thermodyn. 7: 357–384MATHMathSciNetGoogle Scholar
  73. Iverson, R. M., 1997a. Hydraulic modelling of unsteady debris—flow surges with solid—fluid interactions. In: Proceeding of the first International Conference on Debris flow Hazards Mitigation. Am. Soc. Civ. Eng. Water Resources Eng. Div. 550–560Google Scholar
  74. Iverson, R. M., 1997b. The Physics of debris flows. Reviews of Geophysics, 35 (3): 245–296Google Scholar
  75. Iverson, R. M., Denlinger, R. P., 1987. The physics of debris flows–a conceptual assessment. Erosion and Sedimentation in the Pacific Rim (Proceedings of the Corvallis Symposium), IAHS Publ. No. 165: 155–165Google Scholar
  76. Iverson, R. M., Reid, M. C., Lattuslu, R. G. 1997. Debris-flow mobilization from landslides. Annal Reviews, Earth Planet. Sci. 25: 85–138Google Scholar
  77. Jaeger, H. M., Nagel, S. R., 1992. Physics of the granular state. Science, 255, 1523–1531Google Scholar
  78. Jenkins, J. T., Richman, M. W., 1985. Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Rat. Mech. Anal. 87, 355–377MATHMathSciNetGoogle Scholar
  79. Jenkins, J. T., Richman, M. W., 1985. Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485–3494MATHGoogle Scholar
  80. Jenkins, J. T., Richman, M. W., 1986. Boundary conditions for plane flows of smooth nearly elastic, circular disks. J. Fluid Mech. 171, 53–69MATHGoogle Scholar
  81. Jenkins, J. T., Savage, S. B., 1983. A theory for the rapid flow of identical, smooth, nearly elastic particles. J. Fluid Mech. 130, 186–202Google Scholar
  82. Kent, P. E., 1965. The transport mechanism in catastrophic rockfalls. J. Geol. 74, 79–83Google Scholar
  83. Knight, J., Jaeger, H., Nagel, S., 1993. Vibration-induced size separation in granular media: The convection connection, Phys. Rev. Lett. 70, 3728Google Scholar
  84. Koch, T., 1989. Bewegung einer Granulatlawine entlang einer gekriimmten Bahn. Diplomarbeit, Technische Hochschule Darmstadt, 172 ppGoogle Scholar
  85. Koch, T., 1994. Bewegung einer granularen Lawine auf einer geneigten and gekrümmten Fläche. Entwicklung and Anwendung eines theoretisch numerischen Verfahrens and dessen Überprüfung durch Laborexperimente. Doctoral dissertation, Technische Hochschule DarmstadtGoogle Scholar
  86. Koch, T., Greve, R. and Hutter, K., 1994. Unconfined flow of granular avalanches along a partly curved surface. Part II: Experiments and numerical computations. Proc. R. Soc. London, A 445, 415–435MATHGoogle Scholar
  87. Kolymbas, D., 1998. Behaviour of liquefied sand, Phil. Trans. R. Soc. London (in press)Google Scholar
  88. Kolymbas, D., 1998. Geotechnik - Bodenmechanik and Grundbau. Springer Berlin etc. 423 p.Google Scholar
  89. Liu, K. F., Mei,C. C., 1989a. Effect of wave-induced friction on a muddy seabed modelled as a Bingham-plastic fluid. J. Coastal Res. 15 (4): 777–787Google Scholar
  90. Liu, K. F., Mei, C. C., 1989b. Slow spreading of a sheet of mud. J. Fluid Mech. 207: 505–529MATHGoogle Scholar
  91. Liu, K. F., Mei, C. C., 1990. Approximate equations for the slow spreading of a thin sheet of Bingham-plastic fluid. Physics of Fluids 2 ( 1): 30–36MATHGoogle Scholar
  92. Liu, K. F., Mei, C. C., 1994. Roll waves on a layer of muddy fluid flowing down a gentle slope–a Bingham model. Physics of Fluids A6 ( 8): 2577–2590MATHGoogle Scholar
  93. Lucchitta, B. K., 1978. A large landslide on Mars. Geol. Soc. Amer. Bull. 89, 1601–1609Google Scholar
  94. Luding, S., 1997. Die Physik kohäsionsloser granularer Medien. Habilitationsschrift, Fakultät für Physik, Universität Stuttgart, pp 1–195 (unveröffentlicht)Google Scholar
  95. Lun, C. K. K., Savage, S. B., 1987. A simple kinetic theory for granular flow of rough, inelastic, spherical particles. J. Appl. Mech. 54, 47–53MATHGoogle Scholar
  96. Lun, C. K. K., Savage, S. B., Jeffrey, D. J., Chepurniy, N., 1984. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 140, 223–256MATHGoogle Scholar
  97. McCarthy, J. J., Wolf, J. E., Shinbrot, T., Metcalfe, G., 1996. Mixing of granular materials in slowly rotated containers, AICHE, 42, 3351–3363Google Scholar
  98. Mei, C. C., Liu,K. F., 1987. A Bingham-plastic model for a muddy seabed under long waves. J. Geophys. Res. 92 ( 13): 14581–1459Google Scholar
  99. Melosh, J., 1986. The physics of very large landslides. Acta Mechanica 64, 89–99Google Scholar
  100. Metcalfe, G. Shinbrot, T., McCarthy, J. J., Ottino, J. M., 1995. Avalanche mixing of granular solids. Nature, 374, 39–41Google Scholar
  101. Middleton, G. V., Hampton, M. A., 1976. Subaqueous sediment transport and deposition by sediment gravity flows. In: Marine Sediment Transport and Environmental Management, (eds. D. J. Stanley, D. J. P. Swift), 197–218, Wiley, N. Y.Google Scholar
  102. Middleton, G. V., 1970. Experimental studies related to problem of flush sedimentation. In: Flysch Sedimentology in North America (Lajoie, ed). Business and Economics Science Ltd., Toronto, 253–272Google Scholar
  103. Middleton, G. V., 1970. Experimental studies related to problems of Flysch sedimentation. In Flysch Sedimentology in North America (ed. J. Lajoie), 253–72. Geol. Assoc. Can. Spec. Rep. 7 Google Scholar
  104. Naylor, M. A., 1980. The origin of inverse grading in muddy debris flow deposits–A review. J. Sedimentary Petrology, 500 111–1116Google Scholar
  105. Norem, H., Irgens, F., Schieldrop, B. A., 1987. A continuum model for calculating snow avalanches, in: Avalanche Formation, Movement and Effects (Salm, B., Gubler, H. Eds). IAHS Publ. No. 126: 363–379Google Scholar
  106. O’Brien, J. S., Julien, P. Y., Fullerton, W. T., 1993. Two-dimensional water flood and mudflow simulation. J. Hydr. Eng. ASCE, 199 ( 2): 244–261Google Scholar
  107. Passman, S. L., Nunziato, J. W., Bailey, P. B., Thomas, J. B., 1980. Shearing flows of granular materials. J. Eng. Mech. Division, ASCE, 106, 773–783Google Scholar
  108. Perla, R. and Martinelli, M., 1978. Avalanche Handbook, U. S. Department of Agriculture Forest Service, Agriculture Handbook, 489 pp.Google Scholar
  109. Perla, R., 1980. Avalanche release, motion and impact, in: Dynamics of Snow and Ice Masses ( S. C. Colbeck, ed.), Academic Press, New York, 397–462Google Scholar
  110. Perla, R., Cheng, T. T. and McClung, D. M., 1980. A two parameter model of snow avalanche motion, Journal of Glaciology, 26, Nr. 94, 197–202Google Scholar
  111. Reynolds, 0., 1885. On the dilatancy of media composed of rigid particles in contact. Phil. Mag. Ser. 5 (20), 469–481Google Scholar
  112. Ristow, G. H., 1998. Flow properties of granular materials. Habilitationsschrift, Fachbereich Physik, Philipps-Universität Marburg, pp. 1–111Google Scholar
  113. Rosato, A. D., Prinz, F., Strandburg, K. J., Swendsen, R., 1986. Monte Carlo simulation of particulate matter segregation, Powder Technol., 49, 59Google Scholar
  114. Rosato, A. D., Strandburg, K. J., Prinz, F., Swendsen, R. W., 1987. Why the Brazil nuts are on top: Size segregation of particle matter by shaking. Phys. Rev. Lett. 58: 10–38MathSciNetGoogle Scholar
  115. Sallenger, A. H., 1979. Inverse grading and hydraulic equivalence in grain-flow deposits. J. Sedimentary Petrology, 49, 553–562Google Scholar
  116. Salm, B., 1968. On nonuniform, steady flow of avalanching snow, Union de Gdodesie et Géophysique Internationale, Association Internationale d’Hydrologie Scientifique, Assembles générale de Berne, 25 Sept - 7 Oct 1967 (Commission de Neiges et Glaces), Rapports et discussions, 19–29, (Publication No. 79 de l’Association Internationale d’Hydrologic Scientifique)Google Scholar
  117. Savage, S. B., 1979. Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92, 53–96MATHGoogle Scholar
  118. Savage, S. B., 1983. Granular flows down rough inclines–review and extension. Mech. of Granular Materials: New Models and Constitutive Relations (eds. J. T. Jenkins, M. Satake ), Elsevier, 261–82Google Scholar
  119. Savage, S. B., 1984. The mechanics of rapid granular flows. Advances in Applied Mechanics, 24 (eds. T. Y. Wu, J. Huchinson ), Academic, 289–366.Google Scholar
  120. Savage, S. B., 1989. Flow of granular materials. Theoretical and Applied Mechanics (eds. P. Germain, M. Piau, D. Caillierie ), Elsevier, 241–266Google Scholar
  121. Savage, S. B., 1993. Mechanics of granular flows, in: Continuum Mechanics in Environmental Sciences and Geophysics, CISM Lectures No. 337 (ed. K. Hutter, Springer Verlag, Wien-New York, pp. 467 -’522Google Scholar
  122. Savage, S. B., Jeffrey, D. J., 1981. The stress tensor in a granular flow at high shear rates. J. Fluid Mech. 110, 255–272MATHGoogle Scholar
  123. Savage, S. B., Lun, C. K. K., 1988. Particle size segregation in inclined chute flow of dry cohesionless granular solids, J. Fluid Mech. 189, 311–335Google Scholar
  124. Savage, S. B., Sayed, M., 1984. Stresses developed by dry cohesionless granular materials sheared in an annular shear cell. J. Fluid Mech. 142, 391–430Google Scholar
  125. Savage, S. B. and Hutter, K., 1989. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215MATHMathSciNetGoogle Scholar
  126. Savage, S. B. and Hutter, K., 1991. The dynamics of avalanches of granular materials from initiation to runout. Part: Analysis. Acta Mechanica, 86, 201–223MATHMathSciNetGoogle Scholar
  127. Shreve, R. L., 1966. Sherman landslide, Alaska, Science 154, 1639–1643Google Scholar
  128. Shreve, R. L., 1968a. The Blackhawk Landslide. Geol. Soc. Am., Spec. Paper 108, 47 pp.Google Scholar
  129. Shreve, R. L., 1968b. Leakage and fluidization in air-lubricated avalanches. Geol. Soc. Am. Bull. 79, 653–658Google Scholar
  130. Stadler, R., Buggisch, H., 1985. Influence of the deformation rate on shear stress in bulk solids, theoretical aspects and experimental results.Reliable Flow of Particulate Solids, (EFCE Publication Series No. 49, Bergen, Norway), pp. 15Google Scholar
  131. Stadler, R., 1986. Stationäres, schnelles Fliessen von dicht gepackten trockenen and feuchten Schüttgütern. Dr.-Ing. Dissertation, Univ. Karlsruhe, West GermanyGoogle Scholar
  132. Straub, Stephen, 1994. Schnelles granulares Fließen in subaerischen pyroklastischen Strömen. Dissertation, Bayerische Julius-Maximilians-Universität WürzburgGoogle Scholar
  133. Svendsen, B., Hutter, K., 1995. On the thermodynamics of a mixture of isotropic materials with constraints. Int. J. Engng. Sci. 33, 2021–2054MATHMathSciNetGoogle Scholar
  134. Tai, Y. C., Gray, J. M. N. T, 1998. Limiting stress states in granular avalanches, Annals of Glaciology,25 (in press)Google Scholar
  135. Takahashi, T., 1981. Debris flow. Ann. Rev. Fluid Mech. 13, 57–77Google Scholar
  136. Takahashi, T., 1983. Debris flow and debris flow deposition. In: Advances in the Mechanics and Flow of Granular Materials, Vol. II (M. Shalinpoor, ed.), Trans. Tech. Publ., 57–77Google Scholar
  137. Takahashi, T., 1991. Debris flow. International, Association for Hydraulic Research (IAHR), Monograph, A. A. Belkema, Rotterdam-BrookfieldGoogle Scholar
  138. Vanel, L., Rosato, A. D. and Dave, R., 1997. Rise-time regimes of a large sphere in vibrated bulk solids, Phys. Rev. Lett. 78, 1255Google Scholar
  139. Voellmy, A., 1955. Über die Zerstörungskraft von Lawinen, Schweizerische Bauzeitung, Jahrg. 73, Hf 12, 159–62Google Scholar
  140. English translation: On the destructive force of avalanches, U. S. Department of Agriculture, Forest Service, Alta Avalanche Study Center Translation No. 2, 1964 )Google Scholar
  141. Von Terzaghi, K., Fröhlich, O. K., 1936. Theorie der Setzungen von Tonschichten. Franz Deuticke, Leipzig-WienGoogle Scholar
  142. Von Terzaghi, K., Fröhlich, O. K., 1937. Erdbaumechanik und Baupraxis. Eine Klarstellung. Franz Deuticke, Leipzig-WienGoogle Scholar
  143. Von Terzaghi, K., Peck, R. B., 1948. Soil Mechanics in Engineering Practice. Wiley, New YorkGoogle Scholar
  144. Von Terzaghi, K., 1923. Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen, Akademie der Wissenschaften in Wien, Sitzungsberichte. Math.-naturwiss. Klasse Abt. V a, 132 (3/4) 125–138Google Scholar
  145. Von Terzaghi, K., 1924. Die Theorie der hydrodynamischen Spannungserscheinungen und ihr erdbautechnisches Anwendungsgebiet, Proc. of the First International Congress of Applied Mechanics, Delft, 288–294Google Scholar
  146. Von Terzaghi, K., 1925. Erdbaumechanik auf bodenphysikalischer Grundlage, Franz Deuticke, Leipzig-WienMATHGoogle Scholar
  147. Von Terzaghi, K., 1931. Festigkeitseigenschaften der Schüttungen, Sedimente und Gele, in: Handbuch der phys. und techn. Mechanik, Band IV, 513–578Google Scholar
  148. Von Terzaghi, K., 1933. Auftrieb und Kapillardruck an betonierten Talsperren. Die Wasserwirtschaft, 26, 397–399Google Scholar
  149. Von Terzaghi, K., 1943. Theoretical Soil Mechanics. Wiley, New YorkGoogle Scholar
  150. Walton, O. R., Braun, R. L., 1986. Viscosity and temperature calculations for assemblies of inelastic frictional disks. J. Rheology, 30, 949–980Google Scholar
  151. Walton, O. R., Braun, R. L., Mallon, R. G., Cervelli, D. M., 1987. Particle-dynamics calculations of gravity flow of inelastic, frictional spheres. Micromechanics of Granular Materials (eds. M. Satake, J. T. Jenkins ), Elsevier, 153–162Google Scholar
  152. Walton, O.R., Kim, H., Rosato, A., 1991. Micro-structure and stress difference in shearing flows of granular materials. Proc. ASCE Eng. Mech. Div. Conf., Columbus, Ohio, May 19–21, 1991Google Scholar
  153. Wang, Y., Hutter, K., 1998. Shearing flows in a Goodman-Cowin type granular material - Theory and numerical results. J. Particulate Matter (in press)Google Scholar
  154. Wieghardt, K., 1975. Experiments in granular flow. Ann. Rev. Fluid Mech. 7, 89–114Google Scholar
  155. Wieland, M., Gray, J. M. N. T., Huter, K., 1998. Channelized free surface flow of cohesionless granular avalanche in a chute with shallow lateral curvature. J. Fluid Mech. ( submitted)Google Scholar
  156. Williams, J. C., 1976. The segregation of particular materials, a review, Powder Technol. 15, 245Google Scholar
  157. Wilmanski, K., 1997. The thermodynamical model of compressible porous materials with the balance equation of porosity. Preprint 310, Weierstraß Institut für Angewandte Analysis und Stochastik, Berlin Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • K. Hutter
    • 1
  1. 1.Darmstadt University of TechnologyDarmstadtGermany

Personalised recommendations