Computational Environmental Geomechanics

  • B. A. Schrefler
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 409)


This paper presents a general framework for the computational analysis of environmental geomechanics problems. It is based on heat and multiphase flow in deforming porous media where pollutant transport mechanisms can be added. The governing equations are derived and then discretised by means of the finite element method in space and finite differences in time. Appropriate solution methods are addressed. Examples given involve heat and mass transfer together with pollutant transport in deforming geomaterials and surface subsidence problems.


Porous Medium Stress Path Mass Balance Equation Pollutant Transport Solid Skeleton 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrioia L.M., Pinder G.F. (1985). A multiphase approach to modeling of porous media contamination by organic compounds 1. Numerical simulation, Water Resources Research, 21, 19–26.CrossRefGoogle Scholar
  2. AGIP (1996). Progetto Alto Adriatico-Studio di impatto ambientale, AGIP, San Donato, Italy.Google Scholar
  3. Alonso E.E., Gens A. and Josa A. (1990). A constitutive model for partially saturated soils, Géotechnique, 40, 405–430.CrossRefGoogle Scholar
  4. Baggio P., Bonacina C., Schrefler B.A. (1997). Some considerations on modelling heat and mass transfer in porous media, Transport in Porous Media, 28, 233–281.CrossRefGoogle Scholar
  5. Bear J., and Bachmat Y. (1984). Transport phenomena in porous media — Basic equations, Fundamentals of Transport Phenomena in Porous Media. Bear, J. and Corapcioglu M.Y. eds. Nato ASI Series, Nijhoff.Google Scholar
  6. Bolzon G, Schrefler B.A. and Zienkiewicz O.C. (1996). Elastoplastic soil constitutive laws generalized to partially saturated states. Géotechnique. 46, 279–289.CrossRefGoogle Scholar
  7. Brooks R.N., Corey A.T. (1966). Properties of Porous Media affecting fluid flow. J. Irrig, Drain Div. Am.Soc.Civ.Eng., 92 (IR2), 61–68.Google Scholar
  8. Corapcioglu M.Y., Baehr A.L. (1987). A compositional multiphase model for groundwater contamination by petroleum produces. 1. Theoretical considerations. Water Resources Research, 23. 191–200.CrossRefGoogle Scholar
  9. Daksanamurthy V. and Fredlund D.G. (1981). A mathematical model for predicting moisture flow in an unsaturated soil under hydraulic and temperature gradients. Water Resources Research, 17, 714–722.CrossRefGoogle Scholar
  10. Delage P., Schroeder C. and Cui Y.J. (1996). Subsidence and capillary effects in chalk. Proceedings Eurock’96, Balkema, Rotterdam, 1291–1298.Google Scholar
  11. Evangelisti G and Poggi B. (1970). Sopra i fenomeni di deformazione dei terreni da variazione di strato. Atti Acc. delle Scienze dell’Istituto di Bologna, Serie II, 6.Google Scholar
  12. Gambolati G, Verri G. (1995). Advanced Methods for Groundwater Pollution Control. CISM 364, Courses and Lectures, Springer Verlag.Google Scholar
  13. Gray W.G, and Hassanizadeh S.M. (1991a). Paradoxes and realities in unsaturated flow theory, Water Resources Research, Vol. 27, 1847–1854.CrossRefGoogle Scholar
  14. Gray, W.G, and Hassanizadeh S.M. (1991b). Unsaturated flow theory including interfacial phenomena. Water Resources Research, Vol. 27, 1855–1863.CrossRefGoogle Scholar
  15. Hassanizadeh M. and Gray W.G (1979a). General conservation equations for multiphase systems: 1 Averaging procedure. Advanced Water Resources, 2, 131–144.CrossRefGoogle Scholar
  16. Hassanizadeh M. and Gray W.G. (1979b). General conservation equations for multiphase systems: 2; Mass momenta, energy and entropy equations. Advanced Water Resources, 2, 191–203.CrossRefGoogle Scholar
  17. Hassanizadeh M. and Gray W.G (1980). General conservation equations for multiphase systems: 3. Constitutive theory for porous media flow, Advanced Water Resources, 3, 25–40.CrossRefGoogle Scholar
  18. Hassanizadeh M., and Gray W.G (1990). Mechanics and thermodynamics of multiphase flow in porous media including interphase transport, Advanced Water Resources, 13, 169–186.CrossRefGoogle Scholar
  19. Kueper B.H., Frind E.O. (1989). The behaviour of dense non-aqueous phase liquid contaminants in heterogeneous porous media. Contaminant Transport on Groundwater, Kobus H.E. and Kinzelbach W. eds., 381–387, Balkema, Rotterdam.Google Scholar
  20. Lewis R.W. and Schrefler B.A. (1998). The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Wiley and Sons, Chichester.MATHGoogle Scholar
  21. Lewis R.W., Schrefler B.A., Rahman N.A. (1998). A finite element analysis of multiphase immiscible flow in deforming porous media for subsurface systems. Communications Numerical Methods Engineering. 14, 135–149.MathSciNetCrossRefMATHGoogle Scholar
  22. Mimassero M., Shakelford CD. (1994). The role of diffusion in contaminant migration through soil barriers. Rivista Italiana di Geotecnica, 1, 5–23.Google Scholar
  23. Mendoza CA., Frind E.O. (1990). Advective-dispersive transport of dense organic vapor in the unsaturated zone 1. Model development. Water Resour. Res., 226, 379–387.Google Scholar
  24. Meroi E., Schrefler B.A. (1995). Large strain static and dynamic hydro-mechanical analysis of porous media. From: Modern issues in Non-Saturated Soils, Chapter 9, A. Gens, P. Jouanna, Schrefler B.A., eds. CISM Courses and Lectures357 Springer Verlag, 397–447.Google Scholar
  25. Olivella S., Gens A., Alonso E.E. and Carrera J. (1992). Constitutive modelling of porous salt aggregate. Proceedings of the IV Int. Symposium On Numerical Models in Geomechanics. A. A. Balkema, Roterdam, 179–189.Google Scholar
  26. Park K.C., Felippa C.A. (1983). Partitioned analysis of coupled systems. Belytschko T. and Hughes T.R.J. eds. Computational Methods for Transient Analysis. Elsevier Science Publishers B.V.Google Scholar
  27. Parker J.C. (1989). Multiphase flow and transportation in porous media, Rev. Geoph., 27, 311–328.CrossRefGoogle Scholar
  28. Pastor M., Zienkiewicz O.C. and Chan A.H.C. (1990). Generalized plasticity and the modelling of soil behaviour. Int. J. Numer. Anal. Methods Geomechanics. 14, 151–190.CrossRefMATHGoogle Scholar
  29. Schrefler B.A. (1995). F.E. in environmental engineering: Coupled Thermo-hydro-mechanical processes in porous media including pollutant transport. Archives of Computational Methods in Engineering, 2, 3, 1–54.CrossRefGoogle Scholar
  30. Schrefler B.A., Bolzon G, Salomoni V, Simoni L. (1997). On reservoir compaction in gas reservoirs. Rendiconti Fis. Accademia Lincei, s.9, v.8, 235–248.CrossRefGoogle Scholar
  31. Schrefler B.A., Zhan X.Y., Simoni L. (1995). A coupled model for water flow, airflow and heat flow in de-formable porous media. Int. J. Heat Flow and Fluid Flow, 5, 531–547.MATHGoogle Scholar
  32. Schrelfler B.A., D’Alpaos L., Zhan X.Y. and Simoni L. (1994). Pollutant transport in deforming porous media, Eur. J. Meck, A/Solids, 13, n. 4-suppl., 175–194.Google Scholar
  33. Simoni L., Salomoni V. and B. A. Schrefler. Elastoplastic Subsidence Models with and without Capillary Effects. Computer Methods in Applied Mechanics and Engineering, in print.Google Scholar
  34. Turska E., Schrefler B.A. (1993). On convergence condition of partitioned solution procedures for consolidation problems, Computer Methods in Applied Mechanics and Engineering, 106, 51–63.MathSciNetCrossRefMATHGoogle Scholar
  35. Zhan X., Schrefler B.A., Simoni L. (1995). Finite element simulation of multiphase flow, heat flow and solute transport in deformable porous media. Proceedings International Conference Finite Elements in Fluids, Morandi Cecchi M., Morgan K., Periaux J., Schrefler B.A., Zienkiewicz O.C. eds. Dipartimento di Matematica Pura ed Applicata, University of Padua, part II, 1283–1290.Google Scholar
  36. Zienkiewicz O.C. and Taylor R.L. (1989), The Finite Element Method, McGraw-Hill, London.Google Scholar
  37. Zienkiewicz O.C, A. Chan, M. Pastor, Schrefler B.A. and T Shiomi (1999). Computational Soil Dynamics with special Reference to Earthquake Engineering. J. Wiley, Chichester.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • B. A. Schrefler
    • 1
  1. 1.University of PaduaPaduaItaly

Personalised recommendations