Advertisement

Mechanics Applied to the Underground Storage of Radioactive Waste Materials

  • K. S. Chan
  • S. R. Bodner
  • D. E. Munson
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 409)

Abstract

An application of Mechanics to an important environmental problem is an investigation on the creep properties of rock salt which was undertaken in relation to the planned encapsulation of transuranic nuclear waste in caverns excavated in bedded salt formations (the WIPP program in the USA). Those caverns are intended to serve as permanent repositories for radioactive waste over an extensive period so that complete isolation is required of the facility including the shafts that are initially connected to the outside. In conjunction with an extensive experimental program, the analytical and numerical studies on creep of rock salt were concerned with the following subjects: creep based on dislocation mechanisms; damage induced creep leading to volumetric changes, pressure dependence, and creep rupture: healing of damage; failure and fracture mechanisms; and structural integrity of underground storage rooms

Keywords

Volumetric Strain Creep Deformation Damage Zone Rock Salt Damage Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubertin, M., Sgaoula, J. and Gill, D.E. (1993a). A damage model for rocksalt: application to tertiary creep. In H. Kakihan, H.R. Hardy Jr., T. Hoshi and K. Toyodura, eds. Seventh Symposium on Salt. New York: Elsevier Science Publishers. 117–125.Google Scholar
  2. Aubertin, M., Gill, D.E. and Ladanyi, B. (1993b). Modeling the transient inelastic flow of rocksalt, In H. Kakihan, H.R. Hardy Jr., T. Hoshi and K. Toyodura, eds., Seventh Symposium on Salt. New York: Elsevier Science Publishers. 93–104.Google Scholar
  3. Brodsky, N.S. and Munson, D.E. (1994). Thermomechanical damage recovery parameters for rock salt from the Waste Isolation Pilot Plant. In Nelson, P.P. and Lauback, eds., Proceedings of the First North American Rock Mechanics Symposium. Brookfield, VT: Balkema. 731–738.Google Scholar
  4. Callahan, G.D., Fossum, A.F. and Svalstad, D.K., (1990). Documentation of SPECTROM-32: A finite thermomechanical stress analysis program, 1 and 2. RE/SPEC Inc., Rapid City, SD, RSI-0269.Google Scholar
  5. Chan, K.S., Bodner, S.R., Fossum, A.F. and Munson, D.E. (1992). A constitutive model for inelastic flow and damage evolution in solids under triaxial compression. Mechanics of Materials. 14:1–14.CrossRefGoogle Scholar
  6. Chan, K.S., Brodsky, N.S., Fossum, A.F., Bodner, S.R. and Munson, D.E. (1994). Damage-induced nonassociated inelastic flow in rock salt. International Journal of Plasticity. 10:623–624.CrossRefGoogle Scholar
  7. Chan, K.S., Bodner, S.R., Fossum, A.F. and Munson, D.E. (1995a). Constitutive representation of damage healing in WIPP salt. In J.J.K. Daeman and R.A. Schultz, eds., Proceedings of the 35 th U.S.Symposium on Rock Mechanics. Rotterdam, Netherlands: Balkema Publishers. 485–490.Google Scholar
  8. Chan, K.S., DeVries, K.L., Bodner, S.R., Fossum, A.F. and Munson, D.E. (1995b). A damage mechanics approach to life prediction for a salt structure. Computational Mechanics ’95. 1:1140–1145.Google Scholar
  9. Chan, K.S., Munson, D.E., Fossum, A.F. and Bodner, S.R. (1996a). Inelastic flow behaviors or argillaceous salt. International Journal of Damage Mechanics. 5:292–314.CrossRefGoogle Scholar
  10. Chan, K.S., Munson, D.E., Bodner, S.R. and Fossum, A.F. (1996b). Cleavage and creep fracture of rock salt. Acta Metallurgica et Materialia. 44:3553–3565.Google Scholar
  11. Chan, K.S., Bodner, S.R., Fossum, A.F. and Munson. (1997a). A damage mechanics treatment of creep failure in rock salt. International Journal of Damage Mechanics. 6:121–152.CrossRefGoogle Scholar
  12. Chan, K.S., Bodner, S.R. and Munson, D.E. (1997b). Treatment of anisotropic damage development within a scalar damage formulation. Computational Mechanics, 19:522–526.CrossRefGoogle Scholar
  13. Chan, K.S., Brodsky, N.S., Fossum, A.F., Munson, D.E. and Bodner, S.R. (1997c). Creep-induced cleavage fracture in WIPP salt under indirect tension. ASME Transactions, Journal of Engineering Materials and Technology, 119:393–400.CrossRefGoogle Scholar
  14. Chan, K.S., Munson, D.E. and Bodner, S.R. (1998). Recovery and healing of damage in WIPP salt. International Journal of Damage Mechanics. 7:143–166.CrossRefGoogle Scholar
  15. Chan, K.S., Munson, D. E. and Bodner, S.R. (1999). Creep deformation and fracture in rock salt. In Aliabadi, M.H., ed., Fracture of Rock. Ashurst, Southampton, UK.: Computation Mechanics Publications.Google Scholar
  16. Cristescu, N. and Hunsche, U. (1992). Determination of nonassociated constitutive equations of rock salt from experiments. In Besdo, D. and Stein, E., eds., Finite Inelastic Deformation Theory andApplication. Berlin:Springer. 511–523.CrossRefGoogle Scholar
  17. Cristescu, N.D. (1993). A general constitutive equation for transient and stationary creep of rock salt. International Journal of Rock Mechanics, Mineral Science and Geomechanical Abstract. 30:125–140.CrossRefGoogle Scholar
  18. Cristescu, N.D. and Gioda, G. (1994). Visco-Plastic Behaviour of Geomaterials. New York:Springer-Wien (CISM Course).Google Scholar
  19. Fossum, A.F., Brodsky, N.S., Chan, K.S. and Munson, D.E. (1993). Experimental evaluation of a constitutive model for inelastic flow and damage evolution in solids subjected to traxial compression. International Journal of Rock Mechanics and Mining Sciences and GeomechanicsAbstracts. 30:1341–1344.CrossRefGoogle Scholar
  20. Hunsche, U.E. (1993). Failure behavior of rock salt around underground cavities. In H. Kakihan, H.R. Hardy Jr., K. Koyodura and T. Hoshi, eds., Proceedings of the Seventh International Symposium onSalt. New York: Elsevier Science Publishers. 59–65.Google Scholar
  21. Kachanov, L.M. (1958). On creep rupture time. Otdelenie Technicheskikh Nauk Izvestiya Akademii NaukSSSR. 8:26–31.Google Scholar
  22. Kachanov, M. (1992). Effective elastic properties of crack solids: Critical review of some basic concepts. Applied Mechanics Reviews. 45:304–335.CrossRefGoogle Scholar
  23. Munson, D.E. and Dawson, P.R. (1984). Salt constitutive modeling using mechanism maps. Proceedingsof the First Conference on the Mechanical Behavior of Salt. Rockport, MA: Karl Distributors. 717–737.Google Scholar
  24. Pudewills, A., Müller-Hoeppe, N. and Papp, R. (1995). Thermal and thermomechanical analyses for disposal in drifts of a repository in rock salt. Nuclear Technology. 112:79–88.Google Scholar
  25. Pudewills, A. (1998). Thermomechanical analysis of the TSS experiment. In Franzen, T., Bergdahl, S.O. and Nordmark A., eds., Proceedings of the International Conference on Underground Constructionin Modern Infrastructure. Stockholm, Sweden, Rotterdam: AA: Balkema. 317–323.Google Scholar
  26. Senseny, P.E. (1986). Triaxial compression creep tests on salt from the Waste Isolation Pilot Plant. Sandia National Laboratories. SAND85–7261. Albuquerque. NM.Google Scholar
  27. Van Sambeek, L.L., Fossum, A.F., Callahan, G. and Ratigan, J., (1993). Salt mechanics: empirical and theoretical development. In H. Kakihan, H.R. Hardy Jr., K. Koyodura and T. Hoshi. eds., Proceedings of the Seventh International Symposium on Salt. New York: Elsevier Science Publishers. 127–134.Google Scholar
  28. Wawersik, W.R. and Hannum, D.W. (1979). Interim summary of Sandia creep experiments on rock salt from the WIPP study area, Southern New Mexico. Sandia National Laboratories. SAND79–0115, Albuquerque. NM.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • K. S. Chan
    • 1
  • S. R. Bodner
    • 2
  • D. E. Munson
    • 3
  1. 1.Southwest Research InstituteSan AntonioUSA
  2. 2.Technion University - I.I.T.HaifaIsrael
  3. 3.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations