Some Quasi-Analytic and Numerical Methods for Acoustical Imaging of Complex Media

  • A. Wirgin
Part of the International Centre for Mechanical Sciences book series (CISM, volume 398)


The essential features of several rigorous and approximate methods for solving a large class of inverse acoustic wave scattering problems are presented herein. The rigorous (and near-rigorous) methods, which are very computer-intensive, involve solving linear (for the field) and non linear (for the boundary and composition parameters) boundary integral (BIE) and domain integral equations (DIE). The only way to reduce the computational volume, in order to obtain near real-time inversions, is by employing approximate models of the wave-medium interaction. Approximations appealing to complete family of functions representations, perturbation theory, heuristic arguments or asymptotic analysis, are described which often enable a closed-form expression for the scattered field to be obtained. This field ansatz is explicit in terms of the boundary and composition parameters. The latter are then determined from a set of equations that are usually non linear. When, however, the equations are linear, the inversion can be carried out by some sort of inverse (e.g., Fourier) transform. The multiplicity of solutions is demonstrated and the repercussions of model error (leading, for instance, to complex solutions for real parameters) are brought into evidence.


Inverse Problem Scattered Field Acoustical Image Data Equation Inverse Scattering Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.D. Achenbach (ed.), EVALUATION OF MATERIALS AND STRUCTURES BY QUANTITATIVE ULTRASONICS, Springer, Vienna, 1993.Google Scholar
  2. K. Aki and P. Richards, QUANTITATIVE SEISMOLOGY, THEORY AND METHODS I, Freeman, San Francisco, 1980.Google Scholar
  3. T.S. Angell and R.E. Kleinman, Polarizability tensors in low frequency inverse scattering, Radio Sci., 22, 1120–1126, 1987.CrossRefGoogle Scholar
  4. T.S. Angell, R.E. Kleinman, B. Kok and G.F. Roach, A constructive method for identification of an impenetrable scatterer, Wave Motion, 11, 185–200, 1989.CrossRefGoogle Scholar
  5. T.S. Angell, R.E. Kleinman, B. Kok and G.F. Roach, Target reconstruction from scattered far field data, Ann.Télécomm., 44, 456–463, 1989.Google Scholar
  6. M. Bagieu et D. Maystre, Waterman and Rayleigh methods for diffraction problems: extension of the convergence domain, J.Opt.Soc. Am. A, 15, 1566–1576, 1998.Google Scholar
  7. G.A. Baker and P. Graves-Morris, PADE APPROXIMANTS, Cambridge Univ. Press, 1996.Google Scholar
  8. H. Begher and R.P. Gilbert, TRANSFORMATIONS, TRANSMUTATIONS, AND KERNEL FUNCTIONS, vol. 2, Pitman, London, 1994, pp. 97–107.Google Scholar
  10. Y. Body and A. Wirgin, Etude théorique et numérique de problèmes de diffraction à trois dimensions, Ann.Télécomm., 32, 337–345, 1977.Google Scholar
  11. J.C. Bolomey and A. Wirgin, Numerical comparison of the Green’s function and the Waterman and Rayleigh theories of scattering from a cylinder with arbitrary cross-section, Proc.IEE, 121, 794–804, 1974.Google Scholar
  12. S. Bonnard, P. Vincent and M. Saillard, Cross-borehole inverse scattering using a boundary finite-element method, Inverse Probs., 14, 521–534, 1998.CrossRefGoogle Scholar
  13. M. Bonnet, BIE and material differentiation applied to the formulation of obstacle inverse problems, Engrg.Anal.Bound.Elem., 15, 121–136, 1995.CrossRefGoogle Scholar
  14. M.. Born and E. Wolf, PRINCIPLES OF OPTICS, Pergamon, London, 1959.Google Scholar
  15. E. Boschi and G. Ekstrom (eds.), SEISMIC MODELLING OF THE EARTH’S STRUCTURE, Ed. Compositori, Bologna, 1996.Google Scholar
  16. D. Brill, G.C. Gaunaurd and H. Überall, Mechanical eigenfrequencies of axisymmetric fluid objects: Acoustic spectroscopy, Acustica, 53, 11–18, 1983.Google Scholar
  17. O. Bruno and F. Reitich, Numerical solution of diffraction problems: a method of variation of boundaries. II. Finitely conducting gratings, Paoli approximants, and singularities, J.Opt.Soc. Am. A, 10, 2307–2316, 1993.Google Scholar
  18. A. Charalambopoulos and G. Dassios, Inverse scattering via low frequency moments, J.Math.Phys., 33, 4206–4216, 1992.CrossRefGoogle Scholar
  19. G. Chavent and P.C. Sabatier, INVERSE PROBLEMS OF WAVE PROPAGATION AND DIFFRACTION, Springer, Berlin, 1997.Google Scholar
  20. J.M. Chesneaux and A. Wirgin, Reflection from a corrugated surface revisited, J.Acoust.Soc.Am., 96, 1116–1129, 1994.CrossRefGoogle Scholar
  21. W.C. Chew, WAVES AND FIELDS IN INHOMOGENEOUS MEDIA, IEEE Press, New York, 1995.Google Scholar
  22. W.C. Chew, G.P. Otto, W.H. Weedon, J.H. Lin, C.C. Lu, Y.M. Wang and M. Moghaddam, Nonlinear diffraction tomography: the use of inverse scattering for imaging, IntI.J.Imag.Syst.Technol., 7, 16–24, 1996.CrossRefGoogle Scholar
  23. P. Chylek, V. Ramaswamy, A. Ashkin and J.M. Dziedzic, Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data, Appl.Opt., 22, 2302–2307, 1983.CrossRefGoogle Scholar
  24. R. Collins, W.D. Dover, J.R. Bowler and K. Miya. (eds.), NONDESTRUCTIVE TESTING OF MATERIALS, IOS, Oxford, 1995.Google Scholar
  25. D. Colton and R. Kress, INVERSE ACOUSTIC AND ELECTROMAGNETIC SCATTERING THEORY, Springer applied mathematical sciences N° 93, Berlin, 1992.Google Scholar
  26. G. Dassios, The inverse scattering problem for the soft ellipsoid, J.Math.Phys., 28, 2858–2862, 1987.CrossRefGoogle Scholar
  27. G. Dassios and R.J.Lucas, Inverse scattering for the penetrable ellipsoid and ellipsoidal boss, J.Acoust.Soc.Am. 99, 1877–1882, 1996.CrossRefGoogle Scholar
  28. A.K. Datta et S.C. Som, On the inverse scattering problem for dielectric cylindrical scatterers, IEEE Trans.Anten.Prop., 29, 392–397, 1981.CrossRefGoogle Scholar
  29. J.E. Dennis and R.B. Schnabel, NUMERICAL METHODS FOR UNCONSTRAINED OPTIMIZATION AND NONLINEAR EQUATIONS, Prentice-Hall, Englewood Cliffs, 1983.Google Scholar
  30. B. Duchêne and W. Tabbara, Characterization of a buried cylindrical object from its scattered field, IEEE Trans.Sonics Ultrason. 31, 658–663, 1984.CrossRefGoogle Scholar
  31. H.W. Eng1, M. Hanke and A. Neubauer, REGULARIZATION OF INVERSE PROBLEMS, Kluwer, Dordrecht, 1996.Google Scholar
  32. O.R. Gericke, Determination of the geometry of hidden defects by Ultrasonic pulse analysis testing, J.Acoust.Soc.Am., 35, 364–368, 1963.Google Scholar
  33. R.P. Gilbert, T. Scotti, A. Wirgin and Y.S. Xu, The unidentified object problem in a shallow ocean, J.Acoust.Soc.Am., 103, 1320–1327, 1998.CrossRefGoogle Scholar
  34. G.H. Golub and C.F. van Loan, MATRIX COMPUTATIONS, Johns Hopkins Univ.Press, Baltimore, 1989.Google Scholar
  35. O.S. Haddadin and E.S. Ebbini, Multiple frequency distorted Born iterative method for tomographic imaging, in ACOUSTICAL IMAGING, VOL.23, S. Lees and L.A. Ferrari, eds., Plenum, New York, 1997.Google Scholar
  36. R.F. Harrington, FIELD COMPUTATION BY MOMENT METHODS, Mac Milian, New York, 1968.Google Scholar
  37. J.P. Hugonin, N. Joachimowicz et C. Pichot, Quantitative reconstruction of complex permittivity distributions by means of microwave tomography, dans INVERSE METHODS IN ACTION, P.C. Sabatier (ed.), Springer, Berlin, 1990, pp. 302–310.CrossRefGoogle Scholar
  38. W.A. Imbriale and R. Mittra, The two-dimensional inverse scattering problem, IEEE Trans.Anten.Prop., AP-18, 633–642, 1970.Google Scholar
  39. H.M. Iyer and K. Hirahara (eds.), SEISMIC TOMOGRAPHY, Prentice-Hall, London, 1993.Google Scholar
  40. H. Kawabe, The two dimensional inverse acoustic scattering for shape identification, in INVERSE PROBLEMS IN ENGINEERING MECHANICS, H.D. Bui and H. Tanaka (eds.), Balkema, Rotterdam, 1994, pp. 33–39.Google Scholar
  41. R.E. Kleinman and P.M. van den Berg, Two-dimensional location and shape reconstruction, Radio Sci., 29, 1157–1169, 1994.Google Scholar
  42. M. Lambert, R. de Oliveira Bohbot and D. Lesselier, Born-type schemes for the acoustic probing of 1-D fluid media from time-harmonic planar reflection coefficients at two incidences, J.Acoust.Soc.Am., 99, 243–253, 1996.CrossRefGoogle Scholar
  43. K.J. Langenberg, P. Fellinger, R. Marklein, P. Zanger, K. Mayer and T. Kreutter, Inverse methods and imaging, in, EVALUATION OF MATERIALS AND STRUCTURES BY QUANTITATIVE ULTRASONICS, J.D. Achenbach (ed.), Springer, Vienna, 1993.Google Scholar
  44. D. Lesselier et B. Duchêne, Wave field inversion of objects in stratified environments: from back-propagation schemes to full solutions, in REVIEW OF RADIO SCIENCE 1993–1996, W. Ross Stone, ed., URSI, Oxford Univ.Press, Oxford, 1996, pp. 235–268.Google Scholar
  45. D. Lesselier et W. Tabbara, Probing one-dimensional inhomogeneous media: how can it be done ?, in ELECTROMAGNETIC AND ACOUSTIC SCA 1 [BRING: DETECTION AND INVERSE PROBLEMS, C. Bourrely, P. Chiappetta et B. Toressani (eds.), World Scientific, Singapore, 1989, pp. 303–316.Google Scholar
  46. S. Mensah and J.-P. Lefebvre, Enhanced compressibility tomography, IEEE Trans. Ultrason. Ferroelec. Freq.Control, 44, 1245–1252, 1997.CrossRefGoogle Scholar
  47. R.F. Millar, The Rayleigh hypothesis and a related least-squares solution to scattering problems for periodic surfaces and other scatterers, Radio Sci., 8, 785–796, 1973.Google Scholar
  48. J.J. Moré, B.S. Garbow and K.E. Hillstrom, User Guide for Minpack-1, Argonne Natl.Lab. Rept. ANL-80–74, 1980.Google Scholar
  49. P.M. Morse and H. Feshbach, METHODS OF THEORETICAL PHYSICS, McGraw-Hill, New York, 1953.Google Scholar
  50. R.K. Mueller, M. Kaveh and G. Wade, Reconstructive tomography and applications to ultrasonics, Proc.IEEE, 67, 567–587, 1979.CrossRefGoogle Scholar
  51. L. Päivärinta and E. Somersalo, eds., INVERSE PROBLEMS IN MATHEMATICAL PHYSICS, Springer, Berlin„ 1993.Google Scholar
  52. A.G. Ramm, MULTIDIMENSIONAL INVERSE SCATTERING PROBLEMS, Longman, Harlow, 1992.Google Scholar
  53. J.H. Richmond, Scattering by a dielectric cylinder of arbitrary cross section shape, IEEE Trans.Anten.Prop., 13, 334–341, 1965.CrossRefGoogle Scholar
  54. J. Ripoche, G. Maze, J.L. Izbicki, New research in nondestructive testing: Acoustic Resonance Spectroscopy, in PROC. 15TH ULTRASONICS INTL. CONF., London, 1985, pp. 364–370.Google Scholar
  55. B.A. Roberts and A.C. Kak, Reflection mode diffraction tomography, Ultrason.Imaging, 7, 300–320, 1985.Google Scholar
  56. E.A. Robinson, Image reconstruction in exploration geophysics, IEEE Trans.Sonics Ultrason., 31, 259–270, 1984.Google Scholar
  57. D.N.G. Roy, L. Couchman and J. Warner, Scattering and inverse scattering of sound-hard obstacles via shape deformation, Inverse Probs. 13, 585–606, 1997.CrossRefGoogle Scholar
  58. P.C. Sabatier, ed., SOME TOPICS ON INVERSE PROBLEMS, World Scientific, Singapore, 1988. P.C. Sabatier, INVERSE METHODS IN ACTION, Springer, Berlin, 1990.Google Scholar
  59. T. Scotti, Localisation et reconstruction des caractéristiques géométriques et physiques d’un objet à l’aide du champ acoustique diffusé, Doctoral thesis, Université de la Méditerranée, Marseille, 1997.Google Scholar
  60. W. Sachse, Ultrasonic spectroscopy of a fluid-filled cavity in an elastic solid, J.Acoust.Soc.Am., 56, 891–896, 1974.Google Scholar
  61. T. Scotti and A. Wirgin, Shape reconstruction using diffracted waves and canonical solutions, Inverse Probs. 11, 1097–1111, 1995.CrossRefGoogle Scholar
  62. T. Scotti and A. Wirgin, Shape reconstruction of an impenetrable scattering body via the Rayleigh hypothesis, Inverse Probs. 12, 1027–1055, 1996.CrossRefGoogle Scholar
  63. T. Scotti and A. Wirgin, Localisation and shape reconstruction of a hidden object contained within another object from measurements of the scattered acoustic field, in ACTES DU 4ÈME CONGRÈS FRANÇAIS D’ACOUSTIQUE, SFAITEKNEA, Toulouse, 1997, pp. 813–816.Google Scholar
  64. R. Snieder, The role of nonlinearity in inverse problems, Inverse Probs., 14, 387–404, 1998.Google Scholar
  66. A.N. Tikhonov and V.Y. Arsenin, SOLUTIONS OF ILL-POSED PROBLEMS, Wiley, New York, 1977.Google Scholar
  67. W. Tobocman, Comparison of the T-matrix and Helmholtz integral equation methods for wave scattering calculations, J.Acoust.Soc.Am., 77, 369–374, 1985.Google Scholar
  68. W. Tobocman, Inverse acoustic wave scattering in two dimensions from impenetrable targets, Inverse Probs., 5, 1131–1144, 1989.Google Scholar
  70. P.M. van den Berg, M.G. Coté and R.E. Kleinman, Determination of the shape of an unknown perfectly conducting object from experimental scattered field data, Rept. 94–10 of the Center for the Mathematics of Waves, University of Delaware, 1994.Google Scholar
  71. P.M. van den Berg and J.T. Fokkema, The Rayleigh hypothesis in the theory of diffraction by a cylindrical obstacle, IEEE Trans.Anten.Prop., 27, 577–583, 1979.CrossRefGoogle Scholar
  72. A. Wirgin, Application de la méthode des ondes planes à l’étude des problèmes direct et inverse de diffraction d’ondes sur des surfaces molles comportant un relief non périodique, C.R.Acad.Sci.Paris II 294, 17–19, 1982.Google Scholar
  73. A. Wirgin, Determination of the profile of a hard or soft grating from the scattered field, in IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, M. Levy (ed.), IEEE/UFFC, New York, 1994, pp. 1189–1193.Google Scholar
  74. A. Wirgin and T. Scotti, Wide-band approximation of the sound field scattered by an impenetrable body of arbitrary shape, J.Sound Vibr., 194, 537–572, 1996.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • A. Wirgin
    • 1
  1. 1.Lab. de Mécanique et d’AcoustiqueUPR 7051 du CNRSMarseilleFrance

Personalised recommendations