Skip to main content

Inverse Problems in Geophysics

  • Conference paper
Wavefield Inversion

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 398))

Abstract

An important aspect of the physical sciences is to make inferences about physical parameters from data. In general, the laws of physics provide the means for computing the data values given a model. This is called the “forward problem”, see figure 1. In the inverse problem, the aim is to reconstruct the model from a set of measurements. In the ideal case, an exact theory exists that prescribes how the data should be transformed in order to reproduce the model. For some selected examples such a theory exists assuming that the required infinite and noise-free data sets would be available. A quantum mechanical potential in one spatial dimension can be reconstructed when the reflection coefficient is known for all energies [Marchenko, 1955; Burridge, 1980]. This technique can be generalized for the reconstruction of a quantum mechanical potential in three dimensions [Newton, 1989], but in that case a redundant data set is required for reasons that are not well understood. The mass-density in a one-dimensional string can be constructed from the measurements of all eigenfrequencies of that string [Borg,1946], but due to the symmetry of this problem only the even part of the mass-density can be determined. If the seismic velocity in the earth depends only on depth, the velocity can be constructed exactly from the measurement of the arrival time as a function of distance of seismic waves using an Abel transform [Herglotz, 1907; Wiechert, 1907]. Mathematically this problem is identical to the construction of a spherically symmetric quantum mechanical potential in three dimensions [Keller et al., 1956]. However, the construction method of Herglotz-Wiechert only gives an unique result when the velocity increases monotonically with depth [Gerver and Markushevitch, 1966]. This situation is similar in quantum mechanics where a radially symmetric potential can only be constructed uniquely when the potential does not have local minima [Sabatier, 1973].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldridge, D.F., Linearization of the eikonal equation, Geophysics, 59, 1631–1632, 1994.

    Article  Google Scholar 

  2. Alsina, D., R.L. Woodward, and R.K. Snieder, Shear-Wave Velocity Structure in North America from Large-Scale Waveform Inversions of Surface Waves, J. Geophys. Res., 101, 15969–15986, 1996.

    Article  Google Scholar 

  3. Aki, K., and P.G. Richards, Quantitative Seismology (2 volumes), Freeman and Co. New York, 1980.

    Google Scholar 

  4. Backus, G., and J.F. Gilbert, Numerical applications of a formalism for geophysical inverse problems, Geophys. J.R. Astron. Soc., 13, 247–276, 1967.

    Article  Google Scholar 

  5. Backus, G., and J.F. Gilbert, The resolving power of gross earth data, Geophys. J.R. Astron. Soc., 16, 169–205, 1968.

    Article  Google Scholar 

  6. Backus, G. E. and F. Gilbert, Uniqueness in the inversion of inaccurate gross earth data, Philos. Trans. R. Soc. London, Ser. A, 266, 123–192, 1970.

    Google Scholar 

  7. Ben-Menahem, A. and S.J. Singh, Seismic waves and sources, Springer Verlag, New York, 1981.

    Book  Google Scholar 

  8. Borg, G., Eine Umkehrung der Sturm-Liouvillischen Eigenwertaufgabe, Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Math., 78, 1–96, 1946.

    Article  Google Scholar 

  9. Burridge, R., The Gel’fand-Levitan, the Marchenko and the Gopinath-Sondi integral equations of inverse scattering theory, regarded in the context of the inverse impulse response problems, Wave Motion, 2, 305–323, 1980.

    Article  Google Scholar 

  10. Cara, M., Regional variations of higher-mode phase velocities: A spatial filtering method, Geophys. J.R. Astron. Soc., 54, 439–460, 1978.

    Article  Google Scholar 

  11. Claerbout, J.F., Fundamentals of Geophysical data processing, McGraw-Hill, New York, 1976.

    Google Scholar 

  12. Claerbout, J.F., Imaging the Earth’s interior, Blackwell, Oxford, 1985.

    Google Scholar 

  13. Clayton, R. W. and R. P. Comer, A tomographie analysis of mantle heterogeneities from body wave travel time data, EOS, Trans. Am. Geophys. Un., 64, 776, 1983.

    Google Scholar 

  14. Constable, S.C., R.L. Parker, and C.G. Constable, Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data, Geophysics, 52, 289–300, 1987.

    Article  Google Scholar 

  15. Dahlen, F.A., and J. Tromp, Theoretical global seismology, Princeton University Press, Princeton, 1998.

    Google Scholar 

  16. Dorren, H.J.S., E.J. Muyzert, and R.K. Snieder, The stability of one-dimensional inverse scattering, Inverse Problems, 10, 865–880, 1994.

    Article  Google Scholar 

  17. Douma, H., R. Snieder, and A. Lomax, Ensemble inference in terms of Empirical Orthogonal Functions, Geophys. J. Int., 127, 363–378, 1996.

    Article  Google Scholar 

  18. Dziewonski, A.M., and D.L. Anderson, Preliminary Reference Earth Model, Phys. Earth. Plan. Int., 25, 297–356, 1981.

    Article  Google Scholar 

  19. Gerver, M.L. and V. Markushevitch, Determination of a seismic wave velocity from the travel time curve, Geophys. J. Royal astro. Soc., 11 165–173, 1966.

    Article  Google Scholar 

  20. Gilbert, F., Ranking and winnowing gross Earth data for inversion and resolution, Geophys. J. Royal astro. Soc., 23 125–128, 1971.

    Google Scholar 

  21. Gouveia, W.P., and J.A. Scales, Bayesian seismic waveform inversion: parameter estimation and uncertainty analysis, J. Geophys. Res., 103, 2759–2779, 1998.

    Article  Google Scholar 

  22. Gutenberg, B., Dispersion und Extinktion von seismischen Oberflächenwellen und der Aufbau der obersten Erdschichten, Physikalische Zeitschrift, 25, 377–382, 1924.

    Google Scholar 

  23. Herglotz, G. Über das Benndorfsche Problem des Fortpflanzungsgeschwindigkeit der Erdbebenstrahlen, Zeitschrift fur Geophys., 8 145–147, 1907.

    Google Scholar 

  24. Keller, J.B., I. Kay, and J. Shmoys, Determination of a potential from scattering data, Phys. Rev., 102, 557–559, 1956.

    Article  Google Scholar 

  25. Kircpatrick, S., C. Gelatt, and M.P. Vechhis, Optimization by simulated annealing, Science, 220, 671–680, 1983.

    Article  Google Scholar 

  26. Lanczos, C., Linear Differential Operators, Van Nostrand, London, 1961.

    Google Scholar 

  27. Levenberg, K., A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math., 2, 164–168, 1944.

    Google Scholar 

  28. Lomax, A., and R. Snieder, The contrast in upper-mantle shear-wave velocity between the East European Platform and tectonic Europe obtained with genetic algorithm inversion of Rayleigh-wave group dispersion, Geophys. J. Int., 123, 169–182, 1995.

    Article  Google Scholar 

  29. Marchenko, V.A., The construction of the potential energy from the phases of scattered waves, Dokl. Akad. Nauk, 104, 695–698, 1955.

    Google Scholar 

  30. Matsu’ura M. and N. Hirata, Generalized least-squares solutions to quasi-linear inverse problems with a priori information, J. Phys. Earth, 30, 451–468, 1982.

    Article  Google Scholar 

  31. Mayer, K., R. Marklein, K.J. Langenberg and T.Kreutter, Three-dimensional imaging system based on Fourier transform synthetic aperture focussing technique, Ultrasonics, 28, 241–255, 1990.

    Article  Google Scholar 

  32. Menke, W., Geophysical data analysis: discrete inverse theory, Academic Press, San Diego, 1984.

    Google Scholar 

  33. Merzbacher, E., Quantum mechanics ( 2nd ed. ), Wiley, New York, 1970.

    Google Scholar 

  34. Montagner, J.P., and H.C. Nataf, On the inversion of the azimuthal anisotropy of surface waves, J. Geophys. Res., 91, 511–520, 1986.

    Article  Google Scholar 

  35. Mosegaard, K., Resolution analysis of general inverse problems through inverse Monte Carlo sampling, Inverse Problems, 14, 405–426, 1998.

    Article  Google Scholar 

  36. Mosegaard, K., and A. Tarantola, Monte Carlo sampling of solutions to inverse problems, J. Geophys. Res., 100, 12431–12447, 1995.

    Article  Google Scholar 

  37. Muyzert, E., and R. Snieder, An alternative parameterization for surface waves in a transverse isotropic medium, Phys. Earth Planet Int. (submitted), 1999.

    Google Scholar 

  38. Natterer, F., H. Sielschott, and W. Derichs, Schallpyrometrie, in Mathematik–Sclzisseltechnologie fzbr die Zukunft, edited by K.H. Hoffmann, W. Jäger, T. Lochmann and H. Schunk, 435–446, Springer Verlag, Berlin, 1997.

    Chapter  Google Scholar 

  39. Newton, R.G., Inversion of reflection data for layered media: A review of exact methods, Geophys. J.R. Astron. Soc., 65, 191–215, 1981.

    Article  Google Scholar 

  40. Newton, R.G., Inverse Schrödinger scattering in three dimensions, Springer Verlag, Berlin, 1989.

    Book  Google Scholar 

  41. Nolet, G., The upper mantle under Western-Europe inferred from the dispersion of Rayleigh wave modes, J. Geophys., 43, 265–285, 1977.

    Google Scholar 

  42. Nolet, G., Linearized inversion of (teleseismic) data, in The Solution of the Inverse Problem in Geophysical Interpretation, edited by R.Cassinis, Plenum Press, New York, 1981.

    Google Scholar 

  43. Nolet, G., Solving or resolving inadequate and noisy tomographic systems, J. Comp. Phys., 61, 463–482, 1985.

    Article  Google Scholar 

  44. Nolet, G., Seismic wave propagation and seismic tomography, in Seismic Tomography, edited by G.Nolet, pp. 1–23, Reidel, Dordrecht, 1987.

    Google Scholar 

  45. Nolet, G., Partitioned waveform inversion and two-dimensional structure under the Network o f Autonomously Recording Seismographs, J. Geophys. Res., 95, 84998512, 1990.

    Google Scholar 

  46. Nolet, G., S.P. Grand, and B.L.N. Kennett, Seismic heterogeneity in the upper mantle, J. Geophys. Res., 99, 23753–23766, 1994.

    Article  Google Scholar 

  47. Nolet, G, and R. Snieder, Solving large linear inverse problems by projection, Geophys. J. Int., 103, 565–568, 1990.

    Article  Google Scholar 

  48. Paige, C.G., and M.A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least-squares, ACM Trans. Math. Software, 8, 43–71, 1982.

    Article  Google Scholar 

  49. Paige, C.G., and M.A. Saunders, LSQR: Sparse linear equations and least-squares problems, ACM Trans. Math. Software, 8, 195–209, 1982.

    Article  Google Scholar 

  50. Parker, R.L., Geophysical Inverse Theory, Princeton University Press, Princeton, New Jersey, 1994.

    Google Scholar 

  51. Passier, M.L., and R.K. Snieder, Using differential waveform data to retrieve local S-velocity structure or path-averaged S-velocity gradients, J. Geophys. Res., 100, 24061–24078, 1995.

    Article  Google Scholar 

  52. Passier, M.L., and R.K. Snieder, Correlation between shear wave upper mantle structure and tectonic surface expressions: Application to central and southern Germany, J. Geophys. Res., 101, 25293–25304, 1996.

    Article  Google Scholar 

  53. Passier, T.M., R.D. van der Hilst, and R.K. Snieder, Surface wave waveform inversions for local shear-wave velocities under eastern Australia, Geophys. Res. Lett, 24, 1291–1294, 1997.

    Article  Google Scholar 

  54. Press, W.H., Flannery, B.P., Teukolsky, S.A. and W.T. Vetterling, Numerical Recipies, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  55. Rothman, D.H., Nonlinear inversion, statistical mechanics and residual statics estimation, Geophysics, 50, 2784–2796, 1985.

    Article  Google Scholar 

  56. Sabatier, P.C., Discrete ambiguities and equivalent potentials, Phys. Rev. A, 8, 589–601, 1973.

    Article  Google Scholar 

  57. Sambridge, M., Non-linear arrival time inversion: constraining velocity anomalies by seeking smooth models in 3-D, Geophys. J.R. Astron. Soc., 102, 653–677, 1990.

    Article  Google Scholar 

  58. Sambridge, M., and G. Drijkoningen, Genetic algorithms in seismic waveform inversion, Geophys. J. Int., ’109, 323–342, 1992.

    Google Scholar 

  59. Scales, J., and R. Snieder, To Bayes or not to Bayes?, Geophysics, 62, 1045–1046, 1997.

    Google Scholar 

  60. Scales, J., and R. Snieder, What is noise?, Geophysics, 63, 1122–1124, 1998.

    Article  Google Scholar 

  61. Sen, M.K., and P.L. Stoffa, Rapid sampling of model space using genetic algorithms: examples of seismic wave from inversion, Geophys. J. Int., 198, 281–292, 1992.

    Article  Google Scholar 

  62. Sluis, A. van der, and H.A. van der Vorst, Numerical solution of large, sparse linear algebraic systems arising from toniographic problems, in Seismic tomography, with applications in global seismology and exploration geophysics, edited by G. Nolet, Reidel, Dordrecht, 1987.

    Google Scholar 

  63. Snieder, R., 3D Linearized scattering of surface waves and a formalism for surface wave holography, Geophys. J. R. astron. Soc., 84, 581–605, 1986a.

    Article  Google Scholar 

  64. Snieder, R., The influence of topography on the propagation and scattering of surface waves, Phys. Earth Planet. Inter., 44, 226–241, 1986b.

    Article  Google Scholar 

  65. van Heijst, H.J. and J.H. Woodhouse, Measuring surface wave overtone phase velocities using a mode-branch stripping technique, Geophys. J. Int., 131, 209–230, 1997.

    Article  Google Scholar 

  66. Snieder, R., Surface wave holography, in Seismic tomography, with applications in global seismology and exploration geophysics, edited by G. Nolet, pp. 323–337, Reidel, Dordrecht, 1987.

    Google Scholar 

  67. Snieder, R., Large-Scale Waveform Inversions of Surface Waves for Lateral Heterogeneity, 1, Theory and Numerical Examples, J. Geophys. Res., 93, 12055–12065, 1988.

    Article  Google Scholar 

  68. Snieder, R., Large-Scale Waveform Inversions of Surface Waves for Lateral Heterogeneity, 2, Application to Surface Waves in Europe and the Mediterranean, J. Geophys. Res., 93, 12067–12080, 1988.

    Article  Google Scholar 

  69. Snieder, R., A perturbative analysis of nonlinear inversion, Geophys. J. Int., 101, 545–556, 1990.

    Article  Google Scholar 

  70. Snieder, R., The role of the Born-approximation in nonlinear inversion, Inverse Problems, 6, 247–266, 1990.

    Article  Google Scholar 

  71. Snieder, R., An extension of Backus-Gilbert theory to nonlinear inverse problems, Inverse Problems, 7, 409–433, 1991.

    Article  Google Scholar 

  72. Snieder, R., Global inversions using normal modes and long-period surface waves. in Seismic tomography, edited by H.M. Iyer and K. Hirahara, pp. 23–63, Prentice-Hall, London, 1993.

    Google Scholar 

  73. Snieder, R., and D.F. Aldridge, Perturbation theory for travel times, J. Acoust. Soc. Am., 98, 1565–1569, 1995.

    Article  Google Scholar 

  74. Snieder, R.K., J. Beckers, and F. Neele, The effect of small-scale structure on normal mode frequencies and global inversions, J. Geophys. Res., 96, 501–515, 1991.

    Article  Google Scholar 

  75. Snieder, R., and A. Lomax, Wavefield smoothing and the effect of rough velocity perturbations on arrival times and amplitudes, Geophys. J. Int., 125, 796–812, 1996.

    Article  Google Scholar 

  76. Snieder, R., and G. Nolet, Linearized scattering of surface waves on a spherical Earth, J. Geophys., 61, 55–63, 1987.

    Google Scholar 

  77. Snieder, R., and M. Sambridge, The ambiguity in ray perturbation theory, J. Geophys. Res., 98, 22021–22034, 1993.

    Article  Google Scholar 

  78. Spakman, W., S. Van der Lee, and R.D. van der Hilst, Travel-time tomography of the European-Mediterranean mantle down to 1400 km, Phys. Earth Planet. Int., 79, 3–74, 1993.

    Article  Google Scholar 

  79. Strang, Linear algebra and its applications, Harbourt Brace Jovanovisch Publishers, Fort Worth, 1988.

    Google Scholar 

  80. Takeuchi, H. and M. Saito, Seismic surface waves, in Seismology: Surface waves and earth oscillations, (Methods in computational physics, 11), Ed. B.A. Bolt, Academic Press, New York, 1972.

    Google Scholar 

  81. Tanis, E., 1921. Uber Fortplanzungsgeschwindigkeit der seismis- chen Oberffii,chenwellen kings kontinentaler und ozeanischer Wege. Centralblatt für Mineralogie, Geologic und Palriontologle, ` 9 -9, 44–52, 1921.

    Google Scholar 

  82. Tanimoto, T., Free oscillations in a slighly anisotropie earth, Geophys. J.R. Astrun. Soc., 87, 493–517, 1986.

    Article  Google Scholar 

  83. Tarantola, A., Linearized inversion of seismic reflection data, Geophys. Prosp. 32, 998–1015, 1984.

    Article  Google Scholar 

  84. Tarantola, A., Inverse problem. theory, Elsevier, Amsterdam, 1987.

    Google Scholar 

  85. Tarantola, A. and B. Valette, Inverse problems = quest for information, J. Geophys., 50, 159–170, 1982a.

    Google Scholar 

  86. Tarantola, A., and B. Valette, Generalized nonlinear inverse problems solved using the least squares criterion, Rev. Geophys. Space Phys. 20, 219–232, 1982b.

    Article  Google Scholar 

  87. Trampert, J., Global seismic tomography: the inverse problem and beyond, Inverse Problems, 14, 371–385, 1998.

    Article  Google Scholar 

  88. Trampert, J., and J.J. Lévcque, Simultaneous Iterative Reconstruction Technique: Physical interpretation based on the generalized least squares solution, J. Geophys. Res., 95, 12553–12559, 1990.

    Google Scholar 

  89. Trampert, J.,.T.J. LOvînue., and M. Cara, Inverse problems in seismology, in Inverse problems in scattering and imaging, edited by M. Bertero and E.R. Pike, pp. 131145, Adam Hilger, Bristol, 1992.

    Google Scholar 

  90. Tramspert,.T., and R. Snieder, Model estimations based on truncated expansions: Possible artifacts in seismic tomograph y, Science, 271, 1257–1260, 1996.

    Google Scholar 

  91. Trampert, J., ami J.H. Woodhouse, Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds, Geophys. J. Int., 122, 675–690, 1995.

    Article  Google Scholar 

  92. Trasnpert,.1., and J.H. Woodhouse, High resolution global phase velocity distributions, Geophys. Res. Lett., 23, 21–24, 1996.

    Google Scholar 

  93. VanDecar, J.C., and R. Snieder, Obtaining smooth solutions to large linear inverse problems, Geophysics, 59, 818–829, 1994.

    Article  Google Scholar 

  94. van der Hilst, R.D., S. Widiyantoro, and E.R. Engdahl, Evidence for deep mantle circulation from global tomography, Nature, 386, 578–584, 1997.

    Article  Google Scholar 

  95. van der Hilst, R.D., and B.L.N. Kennett, Upper mantle structure beneath Australia from portable array deployments, American Geophysical Union ‘Geodynamics Series’, 38, 39–57, 1998.

    Article  Google Scholar 

  96. van Heijst, H.J. and J.H. Woodhouse, Measuring surface wave overtone phase velocities using a mode-branch stripping technique, Geophys. J. Int., 131, 209–230, 1997.

    Article  Google Scholar 

  97. Weidelt, P., The inverse problem of geomagnetic induction, J. Geophys., 38, 257289, 1972.

    Google Scholar 

  98. Wiechert, E., Über Erdbebenwellen. I. Theoretisches über die Ausbreitung der Erdbebenwellen, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Klasse, 415–529 1907.

    Google Scholar 

  99. Woodhouse, J. H. and A. M. Dziewonski, Mapping the upper mantle: Three dimensional modelling of Earth structure by inversion of seismic waveforms, J. Geophys. Res, 89, 5953–5986, 1984.

    Article  Google Scholar 

  100. Yilmaz, O., Seismic data processing, Investigations in geophysics, 2, Society of Exploration Geophysicists, Tulsa, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Snieder, R., Trampert, J. (1999). Inverse Problems in Geophysics. In: Wirgin, A. (eds) Wavefield Inversion. International Centre for Mechanical Sciences, vol 398. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2486-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2486-4_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83320-9

  • Online ISBN: 978-3-7091-2486-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics