Energy Functionals in Scattering Theory and Inversion of Low Frequency Moments

  • G. Dassios
Part of the International Centre for Mechanical Sciences book series (CISM, volume 398)


The first part of these lectures involves short statements of scattering problems in acoustics, electromagnetics and elasticity. The relative energy conservation theorems are derived from the corresponding governing equations. Then the energy functionals of interest in scattering theory are defined from the basic energy terms entering the relative conservation laws. That includes the differential, the scattering, the absorption and the extinction cross sections for acoustic, electromagnetic and elastic scattering problems. In the second part, it is shown how a knowledge of some generalized low frequency moments, expressing the scattering amplitude, can be used to recover the exact shape of any star shape polynomial surface. The idea is to relate a finite number of generalized moments generated by the leading low-frequency approximation to a set of particular combined spherical moments that appear as coefficients of an algebraic linear system, whose solution provides the coefficients of the scattering surface in spherical harmonics. This is done with the help of an inner product defined over the surface of the unit sphere with respect to an unknown positive surface measure. The special case of a second degree surface, which corresponds to an ellipsoid, is discussed in detail.


Inverse Scattering Energy Functional Power Flux Extinction Cross Section Scatter Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rayleigh, Lord.: The Theory of Sound, Vol. I, II, Dover, New York 1945.Google Scholar
  2. 2.
    Twersky, V.: Rayleigh Scattering, J. Appl. Opt., 3 (1964), 1150–1162.CrossRefGoogle Scholar
  3. 3.
    Colton, D. and Kress, R.: Integral Equation Methods in Scattering Theory, Wiley-Interscience, New York 1983.Google Scholar
  4. 4.
    Ramm, A.G.: Scattering by Obstacles, Reidel, Dordrecht 1986.CrossRefGoogle Scholar
  5. 5.
    de Hoop, A.T.: Handbook of Radiation and Scattering of Waves, Academic Press, San Diego 1995.Google Scholar
  6. 6.
    Colton, D. and Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, Second Ed., Springer-Verlag, Berlin 1998.CrossRefGoogle Scholar
  7. 7.
    Ramm, A.G.: Multidimensional Inverse Scattering Problems, Longman, London 1992.Google Scholar
  8. 8.
    Charalambopoulos, A. and Dassios, G.: Inverse Scattering via Low-Frequency Moments, J. Math. Phys., 33 (1992), 4206–4216.CrossRefGoogle Scholar
  9. 9.
    Apostolopoulos, T. and Dassios, G.: A Parallel Algorithm for Solving the Inverse Scattering Moment Problem, J. Comp. App. Math., 42 (1992), 63–77.CrossRefGoogle Scholar
  10. 10.
    Dassios, G.: The Inverse Scattering Problem for the Soft Ellipsoid, J. Math. Phys., 28 (1987), 2858–2862.CrossRefGoogle Scholar
  11. 11.
    Dassios, G.: Low-Frequency Moments in Inverse Scattering Theory, J. Math. Phys., 31 (1990), 1691–1692.CrossRefGoogle Scholar
  12. 12.
    Lighthill, J.: Waves in Fluids, Cambridge Univ. Press, Cambridge 1980.Google Scholar
  13. 13.
    Stratton, J.A.: Electromagnetic Theory, McGraw-Hill, New York 1941.Google Scholar
  14. 14.
    Jones, D.S.: Methods in Electromagnetic Wave Propagation, Oxford U. Press, Oxford 1979.Google Scholar
  15. 15.
    Silver, S.: Microwave Antenna Theory and Design, MIT Radiation Laboratory Series, 12, McGraw-Hill, New York 1949.Google Scholar
  16. 16.
    Müller, C.: Die Grundzüge einer Mathematichen Theorie Electromagnetischer Schwingungen, Arch. Math., 1 (1948), 296–302.Google Scholar
  17. 17.
    Leontovich, M.A.: Investigation of Radiowave Propagation, Part II, USSR Academy of Science, Moscow 1948.Google Scholar
  18. 18.
    Stratton, J.A. and Chu, L.J.: Diffraction Theory of Electromagnetic Waves, Phys. Rev., 56 (1939), 99–107.CrossRefGoogle Scholar
  19. 19.
    Achenbach, J.D.: Wave Propagation in Elastic Solids, North-Holland, Amsterdam 1973.Google Scholar
  20. 20.
    Kupradze, V.D.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, Amsterdam 1979.Google Scholar
  21. 21.
    Dassios, G. and Kiriaki, K.: The Low-Frequency Theory of Elastic Wave Scattering, Quart. Appl. Math., 42 (1984), 225–248.Google Scholar
  22. 22.
    Rayleigh, L.: On the Incidence of Aerial and Electric Waves upon Small Obstacles in the Form of Ellipsoids or Elliptic Cylinders and on the Passage of Electric Waves through a Circular Aperture in a Conducting Screen, Philos. Mag., 44 (1897), 28–52.Google Scholar
  23. 23.
    Stevenson, A.F.: Solutions of Electromagnetic Scattering Problems as Power Series in the Ratio (Dimension of Scatterer)/Wavelength, J. Appl. Phys., 24 (1953), 1134–1142.CrossRefGoogle Scholar
  24. 24.
    Stevenson, A.F.: Electromagnetic Scattering by an Ellipsoid in the Third Approximation, J. Appl. Phys., 24 (1953), 1143–1151.CrossRefGoogle Scholar
  25. 25.
    Kleinman, R.E.: The Dirichlet Problem for the Helmholtz Equation, Arch. Rat. Mech. Anal., 18 (1965), 205–229.CrossRefGoogle Scholar
  26. 26.
    Kleinman, R.E.: Far Field Scattering at Low Frequencies, Appl. Sci. Res., 18 (1967), 1–8.Google Scholar
  27. 27.
    Kleinman, R.E.: Low Frequency Solution of Electromagnetic Scattering Problems, Proc. Symp. Elect. Wave Theory (Ed. J. Brown ), Pergammon Press, Oxford 1967, 891–905.Google Scholar
  28. 28.
    Kleinman, R.E. and Senior, T.B.A.: Rayleigh Scattering, in: Low and High Frequency Asymptotics (Ed. V.K. Varadan and V.V. Varadan ), North Holland, Amsterdam, 1986, 1–70.Google Scholar
  29. 29.
    Kleinman, R.E.: The Rayleigh Region, Proc. IEEE, 53 (1965), 848–856.CrossRefGoogle Scholar
  30. 30.
    Dassios, G.: Low Frequency Scattering Theory for a Penetrable Body with an Impenetrable Core, SIAM J. Appl. Math., 42 (1982), 272–280.Google Scholar
  31. 31.
    Dassios, G.: Second Order Low Frequency Scattering for the Soft Ellipsoid, SIAM J. Appl. Math., 38 (1980), 373–381.Google Scholar
  32. 32.
    Hobson, E.W.: The Theory of Spherical and Ellipsoidal Harmonics, Chelsea, New York 1955.Google Scholar
  33. 33.
    Goldstein, H.: Classical Mechanics, Addison-Wesley, Reading MA 1965.Google Scholar
  34. 34.
    Abramowitz, M. and Stegun, I.A.: Handbook of Mathematical Functions, National Bureau of Standards, Washington DC 1964.Google Scholar
  35. 35.
    Apostolopoulos, T., Kiriaki, K. and Polyzos, D.: The Inverse Scattering Problem for a Rigid Ellipsoid in Linear Elasticity, Inverse Problems, 6 (1990), 1–9.CrossRefGoogle Scholar
  36. 36.
    Dassios, G. and Lucas, R.: An Inverse Problem in Low Frequency Scattering by an Ellipsoidally Embossed Surface, Wave Motion, 20 (1994), 33–39.CrossRefGoogle Scholar
  37. 37.
    Dassios, G. and Lucas, R.: Inverse Scattering for the Penetrable Ellipsoid and Ellipsoidal Boss, JASA, 99 (1996), 1877–1882.CrossRefGoogle Scholar
  38. 38.
    Dassios, G. and Lucas, R.: Electromagnetic Imaging of Ellipsoids and Ellipsoidal Bosses, QJMAM (in press).Google Scholar
  39. 39.
    Dassios, G. and Sleeman, B.: A Note on the Reconstruction of Ellipsoids from X-Ray Transform, IMA. J. Math. Appl. Med. Biol., 8 (1991), 141–147.CrossRefGoogle Scholar
  40. 40.
    Arnaoudov, Y., Dassios, G. and Georgiev, V.: High-Frequency Asymptotics in Inverse Scattering by Ellipsoids, Math. Meth. Appl. Scien., 16 (1993), 1–12.CrossRefGoogle Scholar
  41. 41.
    Dassios, G. and Kamvyssas, G.: Point Source Excitation in Direct and Inverse Scattering: The Soft and the Hard Small Sphere, IMA J. Appl. Math., 55 (1995), 67–84.Google Scholar
  42. 42.
    Keller, J.B., Kleinman, R.E. and Senior, T.B.A.: Dipole Moments in Rayleigh Scattering, J. Inst. Math. Appl., 9 (1972), 14–22.CrossRefGoogle Scholar
  43. 43.
    Polya, G. and Szegö, G.: Isoperimetric Inequalities in Mathematical Physics, Princeton Univ. Press, Princeton 1951.Google Scholar
  44. 44.
    Brand, L.: Vector and Tensor Analysis, John Wiley, New York 1947.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • G. Dassios
    • 1
  1. 1.University of PatrasPatrasGreece

Personalised recommendations