Skip to main content

Neural Networks and Fuzzy Logic in Active Control of Mechanical Systems

  • Conference paper
Neural Networks in the Analysis and Design of Structures

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 404))

  • 329 Accesses

Abstract

A few applications of neural networks and fuzzy logic in active control of systems are presented. Rigid and flexible, linear and nonlinear, stable and unstable structures are investigated. The basics of neural networks are not covered unlike the essentials about fuzzy reasoning that are highlighted. Within the presented control algorithms neural networks accomplish different tasks. They cover cases in which the control action is computed according to a neural-only paradigm all the way through simpler applications where the role of neural networks is to replicate the behavior of conventional controllers. Nonlinear civil structures under seismic excitation and nonlinear rigid systems as an inverted pendulum and a container-ship are among the systems studied in much detail. Attention is focused on the physics of the problem, on the objectives of the neurcontroller as well as on its practical implementation. Numerical simulations and experimental tests are illustrated to validate the presented approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Armstrong-Hélouvry, P. Dupont, and C. Canudas de Wit, A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica, 30 (1994), pp. 1083–1138.

    Article  MATH  Google Scholar 

  2. T. Ash, Dynamics Node Creation in Backpropagation Networks, ICS Rep. 8901, Univ. of California, San Diego (Ca), 1989.

    Google Scholar 

  3. T. Baber and Y.-K. Wen, Random vibrations of hysteretic degrading systems, ASCE J. Engrg. Mech. Div., 107(6) (1981), pp. 1069–1087.

    Google Scholar 

  4. K. Bani-Hani and J. Ghaboussi, Nonlinear structural control using neural networks, ASCE J. Engrg. Mech. Div., 124(3) (1998), pp. 319–327.

    Article  Google Scholar 

  5. M. Blanke and A. Jensen, Dynamic properties of container vessel with low metacentric height, Trans. Inst. Meas. and Cont., 19(2) (1997), pp. 78–93.

    Article  Google Scholar 

  6. E. Blum and L. Li, Approximation theory and feedforward networks, Neural Networks, 4 (1991), pp. 511–515.

    Article  Google Scholar 

  7. H. Chen, K. Tsai, G. Qi, J. Yang, and F. Amini, Neural network for structure control, ASCE J. Computing in Civil Engrg., 9(2) (1995), pp. 168–176.

    Article  Google Scholar 

  8. L. Chua and S. Parker, Chaos: a tutorial for engineers, Proc. IEEE, 78(3) (1987), pp. 982–1008.

    Google Scholar 

  9. G. De Nicolao, L. Magni, and R. Scattolini, On the robustness of receding-horizon control with terminal constraints, IEEE Trans. Autom. Control, 41(3) (1996), pp. 451–453.

    Article  MATH  Google Scholar 

  10. G. De Nicolao and S. Strada, On the stability of receding-horizon lq control with zero-state terminal constraint, IEEE Trans. Autom. Control, 42(2) (1997), pp. 257–260.

    Article  MATH  Google Scholar 

  11. L. Faravelli and P. Venini, Active structural control by neural networks, Journal of Structural Control, 1(1–2) (1994), pp. 79–101.

    Article  Google Scholar 

  12. R. Fletcher, Practical Methods of Optimization, 2nd edn, John Wiley and Sons, New York, 1989.

    Google Scholar 

  13. J. Ghaboussi and A. Joghataie, Active control of structures using neural networks, ASCE J. Engrg. Mech. Div., 121(4) (1995), pp. 555–567.

    Article  Google Scholar 

  14. K. Hornik, Approximation capabilities of multilayered feedforward networks, Neural Networks, 4 (1991), pp. 251–257.

    Article  Google Scholar 

  15. C. Kallstrom and S. W. L., An integrated rudder control system for roll damping and maintenance, Proc. IX Ship Cont. Syst. Symposium, Bethesda (1990), pp. 278–296.

    Google Scholar 

  16. H. Kwakernaak and R. Sivan, Linear Optimal Cintrol, John Wiley, New York, 1972.

    Google Scholar 

  17. W. Kwon and A. Pearson, A modified quadratic cost problem and feedback stabilization of a linear system, IEEE Trans. Automat. Contr., 22 (1997), pp. 838–842.

    Article  MathSciNet  Google Scholar 

  18. E. Lewis, Principles of Naval Architecture, Soc. of Naval Arch. and Marine Engrg., New York, 1988.

    Google Scholar 

  19. P. Lu, Approximate nonlinear receding-horizon control laws in closed form, Int. J. Control, 71(1) (1998), pp. 19–34.

    Article  MATH  Google Scholar 

  20. Matlab, The Math Works, Inc., Natick, MA, 1999.

    Google Scholar 

  21. D. Mayne and H. Michalska, Robust receding horizon control of constrained nonlinear systems, IEEE Trans. Autom. Control, 38 (1993), pp. 1623–1633.

    Article  MATH  MathSciNet  Google Scholar 

  22. W. Miller, R. Sutton, and P. Werbos, Neural Networks for Control, MIT Press, Cambridge (MA), 1990.

    Book  Google Scholar 

  23. A. Nayfeh, Introduction to Perturbation Techniques, John Wiley, New York, 1981.

    MATH  Google Scholar 

  24. A. Nayfeh and D. Mook, Nonlinear Oscillations, John Wiley, New York, 1979.

    MATH  Google Scholar 

  25. K. Nikzad, A Study of Neural and Conventional Control Paradigms in Active Digital Structural Control, PhD Dissertation, Dept. of Civ. Engrg., Univ. of Illinois at Urbana-Champaign, 1992.

    Google Scholar 

  26. K. Nikzad, J. Ghaboussi, and S. Paul, Actuator dynamics and delay compensation using neurocontroilers, ASCE J. Engrg. Mech. Div., 122(10) (1996), pp. 966–975.

    Article  Google Scholar 

  27. T. Parisini and R. Zoppoli, A receding-horizon regulator for nonlinear systems and a neural approximation, Automatica, 31(10) (1995), pp. 1443–1451.

    Article  MATH  MathSciNet  Google Scholar 

  28. K. Passino and Y. S., Fuzzy control, The Control Handbook, W.S. Levine, editor (1996), pp. 1001–1017.

    Google Scholar 

  29. W. Proce and R. Bishop, Probabilistic Theory of Ship Dynamics, Chapman and Hall, London, 1974.

    Google Scholar 

  30. G. Roberts, Ship roll damping using rudder and stabilizing fins, Proc. IFAC Workshop on Contr. Appl. in Marine Syst., Genoa (1992), pp. 234–248.

    Google Scholar 

  31. D. Rumhelart, G. Hinton, and R. Williams, Learning Internal Representation by Error Propagation, MIT Press, Cambridge, MA, 1986.

    Google Scholar 

  32. A. Sage and C. White III, Optimum Systems Control, Prentice Hall, Inc., Englewood Cliffs NJ, 1977.

    MATH  Google Scholar 

  33. H. Schuster, Deterministic Chaos, Springer Verlag, Weinheim, 1994.

    Google Scholar 

  34. M. Shinozuka and C.-M. Jan, Digital simulation of random processes and its applications, J. Sound and Vibrations, 25(1) (1972), pp. 111–128.

    Article  Google Scholar 

  35. M. Sugeno, Industrial Applications of Fuzzy Control, North Holland, The Netherlands, 1985.

    Google Scholar 

  36. R. Sutton, G. Roberts, and S. Taylor, Tuning fuzzy ship autopilot using artificial neural networks, Trans. Inst. Meas. and Cont., 19(2) (1997), pp. 94–106.

    Article  Google Scholar 

  37. A. Tiano and M. Blanke, Multivariable identification of ship steering and roll motion, Trans. Inst. Meas. and Cont., in press (1998).

    Google Scholar 

  38. A. Tiano and et al., Rudder roll stabilization by neural network based control systems, Proc. III Int. Conf. Manoeuvr. and Cont. of Marine Craft, Southampton (1994), pp. 33–44.

    Google Scholar 

  39. A. Tiano and P. Venini, Fuzzy and neural controller of multivariable ship motion, preprint, (1998).

    Google Scholar 

  40. A. Tiano and A. Zirilli, Fuzzy controller of multivariable ship motion, preprint, (1998).

    Google Scholar 

  41. J. Van Amerongen, P. Van der Klugt, and J. Pieffers, Rudder roll stabilisation-controller design, Proc. VIII Ship Cont. Syst. Symposium, The Hague (1987), pp. 120–142.

    Google Scholar 

  42. P. Venini, Neural Network Based Control of Simple Nonlinear Structures, MSc Thesis, Dept. of Civ. Engrg., Univ. of Illinois at Urbana-Champaign, 1992.

    Google Scholar 

  43. P. Venini, Receding-horizon control of hysteretic oscillators (i): computations and numerical tests, in preparation, (1998).

    Google Scholar 

  44. P. Venini, Receding-horizon control of hysteretic oscillators (ii): approximations by backpropagation neural networks, in preparation, (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Venini, P. (1999). Neural Networks and Fuzzy Logic in Active Control of Mechanical Systems. In: Waszczyszyn, Z. (eds) Neural Networks in the Analysis and Design of Structures. CISM International Centre for Mechanical Sciences, vol 404. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2484-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2484-0_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83322-3

  • Online ISBN: 978-3-7091-2484-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics