Acoustic Applications in Vehicle Engineering

  • R. Freymann
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 396)


During the last decade the acoustic development process in vehicle engineering has evolved from a more or less empirical discipline to a highly precise process. Moreover the shortening of the entire process has enhanced the elaboration of reliable prediction tools to be used in the early development phase of a new vehicle. Both aspects are requiring the elaboration of new approaches in the experimental as well as in the numerical area. Focus is pointed on the application of these new technologies in the field of vehicle acoustics.


Sound Pressure Vehicle Engineer Interior Noise Passenger Compartment Wind Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Freymann, R. Klang statt Lärm in: Der Klang der Dinge: Akustik — eine „Frage des Design”; Ed.: A.V. Langenmaier, Verlag Silke Schreiber, München 1993Google Scholar
  2. [2]
    Freymann, R.; Thoma, G. Acoustic Development of the New Series 7-BMW Automobil technische Zeitschrift 96 (1994) 12, pp. 750–759Google Scholar
  3. [3]
    Freymann, R. et alii Akustikentwicklung des neuen 3er Sonderausgabe Automobil technische/Motortechnische Zeitschrift 98 (1998) 5, pp. 54–61Google Scholar
  4. [4]
    Freymann, R. Von der Pegelakustik zum Sounddesign Fortschritte der Akustik — DAGA 96/Bonn, pp. 32–43, 1996Google Scholar
  5. [5]
    Freymann, R.; Stryczek, R.; Spannheimer, H. Dynamic Response of Coupled Structural-Acoustic Systems Journal of Low Frequency Noise and Vibration, Multi-Science Publishing Co. Ltd., Essex, Vol. 14 No. 1, pp. 11–32, 1995Google Scholar
  6. [6]
    Freymann, R. Structural Modifications on a Swept Wing with Two External Stores by Means of Modal Perturbation and Correction Methods Europ. Space Agency ESA-TT-463 (1978)Google Scholar
  7. [7]
    Bisplinghoff, L.R.; Ashley, H. Principles of Aeroelasticity Dover Pub., Inc. New York, 1975Google Scholar
  8. [8]
    Försching, H. Grundlagen der Aeroelastik Springer Verlag Berlin/Hei del berg/New York, 1974CrossRefMATHGoogle Scholar
  9. [9]
    Mac Neal, R.H.; Citerley, R.; Chargin, M. A New Method of Analyzing Fluid Structure Interaction Using MSC/NASTRAN Mac Neal Schwendler Corp., Los Angeles, 1980Google Scholar
  10. [10]
    N.N. Sysnoise User’s Manual Numerical Integration Technology, Leuven, 1991Google Scholar
  11. [11]
    Cheng, K.W.; Freymann, R. Potential for Using Structural Intensity Technique for Vibro-Acoustic Refinement Conf. Proc. of the 6th Western Pacific Regional Acoustics Conf., Hong Kong, 19 – 21 Nov. 1997, pp. 271–276Google Scholar
  12. [12]
    Bliss, D. B. Study of Bulk Reacting Porous Sound Absorbers and a New Boundary Condition for Thin Porous Layers Journal Acoustic Soc. of America 71(3), March 1982, pp. 533–544ADSCrossRefMATHGoogle Scholar
  13. [13]
    Freymann, R.; Stryczek, R. Dynamic Structural Optimization of Car Body Structures VDI-Berichte Nr. 816, 1990, pp. 745–755Google Scholar
  14. [14]
    Freymann, R. et alii Holographic Modal Analysis in: Laser in Forschung und Technik, Ed. Waidelich, H. et alii, Springer Berlin/Heidelberg/.../Tokio, 1996, pp. 530–542Google Scholar
  15. [15]
    Freymann, R.; Beer, R. Über das dynamische Verhalten von Hohlraumschwingungen Fortschritte der Akustik — DAGA 90/Wien, pp. 819–822, 1990Google Scholar
  16. [16]
    Spannheimer, H.; Freymann, R. Nfrasound and Low Frequency Noise in the Passenger Compartment of Vehicles Journal of Low Frequency Noise, Vibr. and Active Control, Multi-Science Publishing Co, Ltd., Essex, Vol. 16 No. 4, pp. 219–227, 1998Google Scholar
  17. [17]
    Freymann, R.; Stryczek, R. Noise Path Analysis and Optimization Conf. Proc. „Rieter Automotive Systems Conf. 1995”, Zürich 1995Google Scholar
  18. [18]
    Stryczek, R.; Freymann, R. An Experimental-Numerical Method for the Analysis and Optimization of Structure Borne Noise Transmission VDI-Berichte Nr. 1158, 1994, pp. 207–220Google Scholar
  19. [19]
    Lyon, R.H.; DeJong, R.G. Statistical Energy Analysis Butterworth-Heinemann, Boston/Oxford/.../Tokyo, 2nd Ed., 1995Google Scholar
  20. [20]
    Stryczek, R.; Freymann, R. Airborne Noise Transfer Path Analysis ImechE Conference Transactions 1998–5, pp. 321 – 333Google Scholar
  21. [21]
    Hofmann, L. Meßverfahren zur Bestimmung des Luftschall eintrages in den Fahrzeuginnenraum Fachhochschule München, Phys. Technik, 1998Google Scholar
  22. [22]
    Freymann, R.; Fallert, J.; Broich, B. Low Frequency Aeroacoustics Proc. of the ATA Conf. on „Comfort in the Automotive Industry“, Bologna, 6–7 Oct. 1997, pp. 225–232Google Scholar
  23. [23]
    Oliver, D. E. Scanning Laser Vibrometers Automotive Engineering, March 1996, pp. 71 – 75Google Scholar
  24. [24]
    Jones, J.; Valera, J.; Buckberry, G. Lasers Measure Up for the Car Industry Physics World, May 1995, pp. 33–38Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • R. Freymann
    • 1
  1. 1.BMW AGMunichGermany

Personalised recommendations