Advertisement

Design of Moment Resisting Frames

  • F. M. Mazzolani
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 420)

Abstract

Moment-resisting frames (MRF) are structures with a satisfactory behaviour under severe earthquakes. As it has been already noted (Chapter 1, Section 4), they can provide a large number of dissipative zones, where plastic hinges form with potentially high dissipation capacity. In order to maximise the energy dissipation capacity, MRFs have to fail with a mechanism of global type. As a consequence proper design criteria have been conceived to fulfil this condition (Mazzolani and Piluso, 1996a). According to the assumed design approach (see Section 1.2), moment resisting frames can provide different level of strength and ductility.

Keywords

Peak Ground Acceleration Steel Structure Plastic Hinge Sandwich Panel Collapse Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AIJ (1990). Standard for Limit State Design of Steel Structures (Draft). Architectural Institute of Japan ( English version, October 1992 ).Google Scholar
  2. AISC (1997). Seismic Provisions for Structural Steel Buildings. American Institute of Steel Construction. Akiyama H. and Yamada S. (1997). Seismic input and damage of steel moment frames–General report. In Proceedings of the 2’ International Workshop on “Behaviour of Steel Structures in Seismic Areas”, STESSA ’97, Kyoto, Mazzolani F. M., Akiyama H. editors, published by 10/17, Salerno, pp. 789–800.Google Scholar
  3. Aribert J.M and Grecea D, (1999). Dynamic behaviour control of steel frames in seismic areas by equivalent static approaches. In Proceedings of the Stability and Ductility of Steel Structures Conference (SDSS’99),Timisoara, September. D. Dubina and Ivanyi M. editors, Elsevier Science Ltd.Google Scholar
  4. Astaneh A. (1995a). Seismic Design of Bolted Steel Moment-Resisting Frames. Structural Steel Educational Council, Technical Information and Service.Google Scholar
  5. Astaneh A. (1995b). Seismic behaviour and design of steel semi-rigid structures. In Proceedings of Behaviour of Steel Structures in Seismic Areas, STESSA ’94, Timisoara, Romania, F.M. Mazzolani, and V. Gioncu editors, published by E & FN Spon, pp. 547–556.Google Scholar
  6. Astaneh A., Nader M. (1992). Shaking table tests of steel semi-rigid frames and seismic design procedures. In Proceedings I S State of the Art Workshop COST CI,Strasbourg.Google Scholar
  7. Azizinamini A. and Radziminski J. B. (1988). Prediction of moment-rotation behaviour of semi-rigid beam-to-column connections. In R. Bjorhovde, J. Brozzetti and A. Colson eds., Connections in steel structures: behaviour, strength and design. London and New York: Elsevier Applied Science.Google Scholar
  8. Ballio G. (1985). ECCS approach for the design of steel structures against earthquakes. In Symposium on steel in buildings, Luxembourg, 1985; IABSE-AIPC-IVBHReport, Vol. 48, pp. 373–380.Google Scholar
  9. Ballio G., Calado L., De Martino A., Faella C., Mazzolani F.M. (1986). Steel beam-to-column joints under cyclic loads: experimental and numerical approach. In Proceedings of the 8 th European Conference on Earthquake Engineering. Lisbon, September.Google Scholar
  10. Ballio G., Calado L., De Martino A., Faella C., Mazzolani F.M. (1987). Cyclic behaviour of steel beamto-column joints: experimental research. Costruzioni Metalliche, N. 2.Google Scholar
  11. Ballio G. and Castiglioni C.A., (1993). An approach to the seismic design of steel structures based on cumulative damage criteria. In Paper accepted for publication on Earthquake Engineering and Structural Dynamics.Google Scholar
  12. Ballio G. and Chen Y. (1993a). An experimental research on beam-to-column joints: interior connections. In Proceedings of the XIV CTA Congress. Viareggio, Italy.Google Scholar
  13. Ballio G. and Chen Y. (19936). An experimental research on beam-to-column joints: exterior connections. In Proceedings of the XIV CTA Congress. Viareggio, Italy.Google Scholar
  14. Bertero V. V., Anderson J. C., Krawinkler H. (1994). Performance of steel building structures during the Northridge Earthquake. In Earthquake Engineering Research Center, Report No. UBC/EERC-94/09,University of California, Berkeley.Google Scholar
  15. Bjorhovde R., Colson A. and Brozzetti J. (1990). Classification system for beam-to-column connections. Journal of Structural Engineering, ASCE, Vol. 116, N. 11, November.Google Scholar
  16. Bruneau M., Uang C.M. and Whittaker A. (1998). Ductile design of steel structures. McGraw-Hill.Google Scholar
  17. Calado L. and Azevedo J., (1989). A model for predicting the failure of structural steel elements. In Journal of Constructional steel research, Vol. 14, pp. 41–64, 1989.Google Scholar
  18. Calderoni B., Ghersi A. and Mazzolani F.M. (1996). Critical analysis of EC8 approach to face the problem of structural regularity. In Proceedings of the European Workshop on Seismic Behaviour of Asymmetric and Setback Structures. Anacapri, Italy, October 4–5, Roberto Ramasco and Avigdor Rutemberg editors.Google Scholar
  19. CNR-GNDT (1984). Norme tecniche per le costruzioni in zone sismiche. Gruppo Nazionale per la Difesa dai Terremoti. Dicembre.Google Scholar
  20. Commission of the European Communities (1993). Eurocode 3: Design of Steel Structures, ENV. Commission of the EuropeanGoogle Scholar
  21. Communities (1994). Eurocode 8: Structures in Seismic Regions, ENV. Como M. and Lanni G. (1983). Aseismic toughness of structures. In Meccanica. N. 18, pp. 107–114.Google Scholar
  22. Cosenza E., De Luca A., Faella C. and Piluso V., (1988). A rational formulation for the q-factor in steel structures. In 9 4 ’ World Conference on Earthquake Engineering,Tokyo, August.Google Scholar
  23. Cosenza E., Faella C. and Piluso V. (1989). Effetto del degrado geometrico sul coefficiente di struttura. In Proceedings of the IV Convegno Nazionale “L’ingegneria sismica in Italia”,Milano, Ottobre.Google Scholar
  24. De Matteis G. and Landolfo R. (1998a). Structural behaviour of sandwich panel shear walls: an experimental analysis. Materials and structures, vol. 32, pp. 331–341.CrossRefGoogle Scholar
  25. De Matteis G. and Landolfo R. (19986). Diaphragm effect for industrial buildings under earthquake loading. In Proceedings of 2 1 ’d World Conference on Steel Construction,San Sebastian, Spain.Google Scholar
  26. De Matteis G. and Landolfo R. (1998c). Dynamic response of infilled multistorey steel frames. Proceedings of 11 t11 Conference on Earthquake Engineering, Paris La Defense.Google Scholar
  27. De Matteis G., Landolfo R., Mazzolani F.M. (1996). On the shear flexibility of corrugated shear panels. Steel Structures, Journal of Singapore Structural Steel Society.Google Scholar
  28. De Matteis G., Landolfo R., Dubina D. and Stratan A., (1999). Influence of the structural typology on the seismic performance of steel framed buildings. In the RECOS Copernicus project report, Chapter 7. 3.Google Scholar
  29. ECCS (European Convention for Constructional Steelwork) (1977). European recommendations for the stressed skin design of steel structures.Google Scholar
  30. ECCS (European Convention for Constructional Steelwork) (1986). Recommended testing procedure for assessing the behaviour of structural steel elements under cyclic loads.Google Scholar
  31. ECCS (European Convention for Constructional Steelwork) (1988). European Recommendations for Steel Structures in Seismic Zones.Google Scholar
  32. Faella C., Mazzarella O. and Piluso V. (1993). L’influenza della non-linearità geometrica sul danneggiamento strutturale. In Proceedings of the VI Convegno Nazionale “L’ingegneria sismica in Italia”, Perugia, 13–15 Ottobre 1993.Google Scholar
  33. Faella C., Piluso V. and Rizzano G. (1994). Connection influence on the seismic behaviour of steel frames. In Proceedings of International Workshop and Seminar on Behaviour of Steel Structures in Seismic Areas, STESSA 94,Timisoara, Romania, F.M. Mazzolani, and V. Gioncu editors, published by E & FN Spon, 26 June-1 July.Google Scholar
  34. Faggiano B. and Mazzolani F.M. (1999). Interpretazione del criterio di gerarchia nel dimensionamento dei telai in acciaio. In Proceedings of the IX National Conference “L’Ingegneria sismica in Italia”. Torino, Italy.Google Scholar
  35. Ghersi A., Marino E. and Neri F., (1999). A simple procedure to design steel frames to fail in global mode. In Proceedings of the Stability and Ductility of Steel Structures (SDSS) Conference 1999, Timisoara, Romania, September.Google Scholar
  36. Gioncu V. (1997). Ductility demands (General Report). In Proceedings of the STESSA 97 Conference on “Behaviour of Steel Structures in Seismic Areas”,Kyoto, F.’ M. Mazzolani & H. Akiyama editors, published by 10/17 Salerno.Google Scholar
  37. Gioncu V., Mazzolani F. M. (1995). Alternative methods for assessing local ductility In Proceedings of the I S ’ International Workshop on “Behaviour of Steel Structures in Seismic Areas” STESSA ’94, Timisoara, Romania, F.M. Mazzolani, and V. Gioncu editors, published by E & FN Spon, an Imprint of Chapman & Hall, London.Google Scholar
  38. Giuffrè A. and Giannini R., (1982). La duttilità nelle strutture in cemento armato. In ANCE-AIDIS,Roma. Guerra C. A., Mazzolani F. M., Piluso V. (1990a). On the seismic behaviour of irregular steel frames. In Proceedings 9 1h ECEE,Moscow.Google Scholar
  39. Guerra C. A., Mazzolani F. M. and Piluso V. (19906). Overall stability effects in steel structures. In Proceedings of the 9` h European Conference on Earthquake Engineering,Moscow, 11–16 September.Google Scholar
  40. Home M.R. and Morris L.J., (1973). Optimum design of multi-storey rigid frames. In Chapter 14 of “Optimum Structural Design - Theory and Application”, edited by R.H. Gallagher and O.C. Zienkiewicz, Wiley.Google Scholar
  41. Horne M.R. and Morris L.J., (1981). Plastic design of low-rise frames. In Constrado, Collins Professional and technical books,London.Google Scholar
  42. Kato B. (1995). Development and design of seismic resistant steel structures in Japan. In Proceedings of the I s ’ International Workshop on “Behaviour of Steel Structures in Seismic Areas” STESSA ’94, Timisoara, Romania, F.M. Mazzolani, and V. Gioncu editors, published by E & FN Spon, an Imprint of Chapman & Hall, London.Google Scholar
  43. Kato B. and Akiyama, (1982). Seismic design of steel building. In Journal of Structural Division,ASCE, August.Google Scholar
  44. Kishi N, Chen W.F., Goto Y. and Hasan R. (1996). Behaviour of tall buildings with mixed use of rigid and semi-rigid connections. In Computer and Science,No 6, Elsevier Science Ltd, 1993–1206.Google Scholar
  45. Krawinkler H. (1995). Systems behaviour of structural steel frames subjected to earthquake ground motion. In Background Reports SAC 95–09.Google Scholar
  46. Krawinkler H. and Nassar A.A., (1992). Seismic design based on ductility and cumulative damage demands and capacities. In Non linear analysis and design of reinforced concrete buildings, Eds. P. Fajfar and H. Krawinkler, Elsevier, London.Google Scholar
  47. Kuwamura, H., Kato B. (1989). Effect of randomness in structural members’ yield strength on the structural systems’ ductility. Journal of Constructional Steel Research. N. 13.Google Scholar
  48. Landolfo R., Mazzolani F. M. (1990). The consequence of design criteria on the seismic behaviour of steel frames. In Proceedings 9 6 ECEE,Moscow.Google Scholar
  49. Lee H-S. (1996). Revised Rules for Concept of Strong-Column Weak-Girder Design. In Journal of Structural Engineering. Vol.122, No 4, April, 359–364.Google Scholar
  50. Matsui C. and Sakai J. (1992). Effect of collapse modes on ductility of steel frames. In Proceedings of the Tenth World Conference on Earthquake Engineering. Balkema, Rotterdam.Google Scholar
  51. Mazzolani F. M. (1988). The ECCS activity in the field of recommendations for steel seismic resistant structures. In Proceedings of the 9 6 World Conference on Earthquake Engineering, WCEE. Tokyo, Kyoto.Google Scholar
  52. Mazzolani F. M. (1995a). Design of seismic resistant steel structures. In Proceedings of the 10 6 ECEE. Vienna 1994, published by Balkema, Rotterdam.Google Scholar
  53. Mazzolani F. M. (1995b). Eurocode 8 - chapter “Steel”: background and remarks. In Proceedings of 10’“ European Conference on Earthquake Engineering, ECEE. Vienna, 1994, published by Balkema, Rotterdam.Google Scholar
  54. Mazzolani F. M. (1998). Design of steel structures in seismic regions: the paramount influence of connections. In Proceedings of the COST CI International Conference on “Control of the semi-rigid behaviour of civil engineering structural connections “. Liege, September 17–18.Google Scholar
  55. Mazzolani F.M. (1999). Principles of design of seismic resistant steel structures. In Proceedings of the National Conference on Metal Structures. Ljiubljana, May 20.Google Scholar
  56. Mazzolani F.M. (edr., 2000). Moment resisting connections of steel frames in seismic areas: design and reliability. Published by E & FN SPON, London, in press.Google Scholar
  57. Mazzolani F. M., Mele E. and Piluso V. (1990a). Statistical features of mechanical properties of structural steels. ECCS Document TCJ3.26.90.Google Scholar
  58. Mazzolani F. M., Mele E. and Piluso V. (1990b). Analisi statistica del comportamento inelastico di telai in acciaio con resistenza casuale. In Proceedings of the V Convegno Nazionale “L’Ingegneria Sismica in Italia”. Palermo 29 Settembre-2 Ottobre.Google Scholar
  59. Mazzolani F. M. and Piluso V. (1990). Skin-effect in pin jointed steel structures. Ingegneria sismica. N. 3.Google Scholar
  60. Mazzolani F. M., Mele E. and Piluso V. (1991). On the effect of randomness of yield strength in steel structures under seismic loads. ECCS Document. TC 13.01. 91.Google Scholar
  61. Mazzolani F. M. and Piluso V. (1991). Influence of panel connecting system on the dynamic response of structures composed by frames and collaborating claddings. In Proceedings of the Second International Workshop “Connections in steel structures: behaviour, strength and design”. Pittsburgh, Pennsylvania, April, 10–12.Google Scholar
  62. Mazzolani F. M., Mele E. and Piluso V. (1992). The seismic behaviour of steel frames with random material variability. In Proceedings of the X World Conference on Earthquake Engineering. Madrid, July.Google Scholar
  63. Mazzolani F. M., Piluso V. (1993a). Member behavioural classes of steel beams and beam-columns. In Proceedings of the XIV CTA Congress,Viareggio.Google Scholar
  64. Mazzolani F. M., and Piluso V. (1993b). Failure mode and ductility control of seismic resistant MR frames. In Proceedings of the XIV CTA Congress, Viareggio.Google Scholar
  65. Ma77olani F. M., Piluso V. (1993c). P-i1 effect in seismic resistant steel structures. In Proceedings of SSRC Annual Technical Session & Meeting,Milwaukee, April.Google Scholar
  66. Mazzolani F. M., Piluso V. (1995a). Seismic design criteria for moment resisting steel frames. In Proceedings of the I S ’ European Conference on Steel Structures, EUROSTEEL Athens, published in “Steel Structures”, (editor Kounadis, Balkema).Google Scholar
  67. Mazzolani F. M., Piluso V. (1995b). An attempt of codification of semi-rigidity for seismic resistant steel structures. In Proceedings 3 td International Workshop on Connections in Steel Structures, Trento, Pergamon 1996.Google Scholar
  68. Mazzolani F.M. and Piluso V. (1995c). A new method to design steel frames failing in global mode including P-~ effects. In Proceedings of the I st International Workshop on “Behaviour of Steel Structures in Seismic Areas” STESSA ’94, Timisoara, Romania, F.M. Mazzolani, and V. Gioncu editors, published by E & FN SPON, an Imprint of Chapman & Hall, London.Google Scholar
  69. Mazzolani, F.M. and Piluso, V. (1996a). Theory and Design of Seismic Resistant Steel Frames. E & FN Spon, an Imprint of Chapman & Hall, London.Google Scholar
  70. Mazzolani F. M., and Piluso V. (1996b). Stability issues in seismic design of rigid and semirigid frames. SSRC Technical Meeting. Chicago, April.Google Scholar
  71. Mazzolani F. M., and Piluso V. (1996c). Behaviour and design of set-back steel frames. In Proceedings of the European Workshop on the Seismic Behaviour of Asymmetric and Setback Structures. Anacapri, Isle of Capri, Italy, 4–5 October.Google Scholar
  72. Mazzolani F. M., Piluso V. (1997a). Plastic Design of Seismic Resistant Steel Frames. In Earthquake Engineering and Structural Dynamics, Vol. 26, 167–191.Google Scholar
  73. Mazzolani, F.M. and Piluso, V. (1997b). The influence of design configuration in the seismic response of moment-resisting frames. In Proceedings of the 2 st International Workshop on “Behaviour of Steel Structures in Seismic Areas “,Kyoto, Mazzolani F. M., Akiyama H. (editors), 10/17, Salerno.Google Scholar
  74. Mazzolani F. M., Piluso V. (1997c). Review of code provisions for vertical irregularity. In Proceedings of the STESSA 97 Conference on “Behaviour of Steel Structures in Seismic Areas”,Kyoto. F. M. Mazzolani and H. Akiyama editors, published by 10/17, Salerno.Google Scholar
  75. Mazzolani F. M., Piluso V., Rizzano G. (1998). Design of full-strength extended end-plate joints for random material variability. In Proceedings of COST Cl Congress, Liège.Google Scholar
  76. Newmark N.M. and Hall J.W., (1973). Procedures and criteria for earthquake resistant design. In Building practice for disaster mitigation, Building science series 45, National Bureau of Standards, Washington, pp. 90–103, Feb.1973.Google Scholar
  77. Mazzolani F. M. and Sylos Labini F. (1984). Skin-frame interaction in seismic resistant steel structures. Costruzioni Metalliche, N. 4.Google Scholar
  78. Palazzo B. and Fraternali F., (1987a). L’uso degli spettri di collasso nell’analisi sismica: proposta per una diversa formulazione del coefficiente di struttura. In 3° Convegno nazionale “L’ingegneria sismica in Italia”,Roma.Google Scholar
  79. Palazzo B. and Fraternali F., (1987b). L’influenza dell’effetto P-ii sulla risposta sismica dei sistemi a comportamento elasto-plastico: proposta di una diversa formulazione del coefficiente di struttura. In Giornate italiane delle costruzioni in acciaio, C.T.A.,Trieste. SAC 96–03 (1997). Interim guidelines. FEMA 267/A, SAC Join Venture, California, USA.Google Scholar
  80. Sanpaolesi L., Biolzi L. and Tacchi R. (1983). Indagine sperimentale sul contributo irrigidente di pannelli in lamiera grecata. In Proceedings of the IX CTA Congress,Perugia, Italy.Google Scholar
  81. Sanpaolesi L. (1984). Indagine sperimentale sulla resistenza e duttilità di pannelli-parete in lamiera grecata. Italsider, Quaderno Tecnico N. 7.Google Scholar
  82. Setti P. (1985). Un metodo per la determinazione del coefficiente di struttura per le costruzioni metalliche in zona sismica. In Costruzioni metalliche, No 3.Google Scholar
  83. Sedlacek G. and Kuck J., (1993). Determination of q-factors for Eurocode 8. In Aachen den 31. 8. 1993.Google Scholar
  84. Shen J. (1996). A new dual system for seismic design of steel buildings. In Proceedings of Advanced in Steel Structures, ICSASS’96, Hong Kong, Vol. 2, Edited by S.L. Chan and J.G. Teng, Pergamon, Elsevier Science Ltd, 1027–1033.Google Scholar
  85. UBC (Uniform Building Code, 1997 ). Structural Engineering Design Provisions. Volume 2.Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • F. M. Mazzolani
    • 1
  1. 1.University “Federico II” of NaplesNaplesItaly

Personalised recommendations