Procedures to Verify Rotation Capacity

  • U. Kuhlmann
  • F. Kühnemund
Part of the International Centre for Mechanical Sciences book series (CISM, volume 419)


This document compares the definition and the verification of rotation capacity of steel joints and members and suggests a coherent definition. It describes the verification procedure of rotation capacity for members and joints and points out how deemed-tosatisfy criteria can be derived from scientific investigations. Finally special attention is given to component tests and theoretical studies aiming at the determination of their load deformation behaviour. The dominant influence of the component “column web in compression” is given special consideration when the rotation capacity of a joint is derived.


Axial Force Ultimate Load Plastic Hinge Deformation Capacity Steel Joint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, I.; Kirby, P. A. (1997). Maximum Connection Rotations in Non-Sway Semi-rigid Frames. In Journal of Constructional Steel Research, Vol. 40.Google Scholar
  2. Boender, E. H. (1995). Het Randportaalprogramma. TU Delft.Google Scholar
  3. Boender, E. H.; Stark, J.; Steenhuis, M.(1996). The Required Rotation Capacity of Joints in Braced Steel Frames. In IABSE Colloquium Istanbul.Google Scholar
  4. Eurocode 3 (1992)–Design of steel structures. Part 1–1: General rules and rules for buildings. European prestandard.Google Scholar
  5. Eurocode 4 (1992)–Design of composite steel and concrete structures–Part 1–1: General rules and rules for buildings. European prestandard.Google Scholar
  6. Huber, G. (1999). Non-linear calculations of composite sections and semi-continuous joints. Dissertation Universität Innsbruck.Google Scholar
  7. Jaspart, J. P. (1991). Etude de la semi-rigidité des noeuds poutre-colonne et son influence sur la résistance et la stabilité des ossatures en acier. Ph-D Thesis. Université Liège.Google Scholar
  8. Jaspait, J. P. (1996). Plastic hinge idealisation of structural joints. EC 3 philosophy. Document COST C1/WD2/96–02, Aachen.Google Scholar
  9. Jaspait, J. P. (1999). Recent advances in the field of structural steel joints and their representation in the building frame analysis and design process. COST Cl WG2 Publication, Brussels and Luxembourg.Google Scholar
  10. Jaspait, J.P. (1996/1997). Contributions to recent advances in the field of steel joints. Column bases and further configurations for beam-to-column joints and beam splices. Thèse d’agrégé de l’enseignement supérieur. Université Liège.Google Scholar
  11. Kattner; M. (1999). Beitrag zum Entwurf von Rahmen mit Verbundknoten im Hochbau. Thesis No. 2055, Ecole Polytechnique Fédérale, Lausanne.Google Scholar
  12. Klein, H. (1985). Das elastisch-plastische Last-Verformungsverhalten M - u steifenloser, geschweißter Knoten fir die Berechnung von Stahlrahmen mit HEB-Stützen. Dissertation Universität Innsbruck.Google Scholar
  13. Kuhlmann, U. (1986). Rotationskapazität biegebeanspruchter I-Profile unter Berücksichtigung des plastischen Beulens. Dissertation Ruhr-Universität Bochum.Google Scholar
  14. Kuhlmann, U. (1989). Definition of Flange Slenderness Limits on the Basis of Rotation Capacity Values. In Journal of Constructional Steel Research. Vol. 14, No. 1.Google Scholar
  15. Kuhlmann, U. (1997). Verification procedure for rotation capacity of joints. Document COST C1/WD2/97-• 24. Innsbruck.Google Scholar
  16. Kuhlmann, U.; Fürch, A. (1997): Deformation capacity of the component „column web in compression“. Internal test-report. University of Stuttgart.Google Scholar
  17. Kuhlmann, U.; Kühnemund, F. (1999). Deformation capacity of the component „column web in compression“. Internal test report. University of Stuttgart.Google Scholar
  18. Kuhlmann, U.; Sedlacek, G.; Kühnemund, F.; Stangenberg, H. (2000). Verformungsverhalten der Komponenten von wirtschaftlichen steifenlosen Anschlußkonstruktionen für die Anwendung plastischer Bemessungskonzepte im Stahlbau. Research Project, Arbeitsgemeinschaft industrieller Forschungsvereinigungen “Otto von Guericke” e.V., not yet finished.Google Scholar
  19. Kühnemund, F. (2001). Zum Rotationsnachweis nachgiebiger Anschlüsse im Stahlbau. Doctoral thesis in preparation. Universität Stuttgart.Google Scholar
  20. Li, T. Q.; Choo, B. S.; Nethercot, D. A. (1995). Determination of Rotation Capacity Requirements for Steel and Composite Beams. In Journal of Constructional Steel Research. Vol. 32.Google Scholar
  21. Nethercot, D. A.; Li, T. Q.; Choo, B. S. (1995). Required Rotations and Moment Redistribution for Composite Frames and Continuous Beams. In Journal of Constructional Steel Research. Vol. 35, Number 2.Google Scholar
  22. Reichert, F. (1998). Investigations on the component „column web in compression“ for the determination of rotation capacity of semi-rigid joints. Diploma Thesis. University of Stuttgart.Google Scholar
  23. Revised Annex J of Eurocode 3 (1997). Joints in Building Frames. Edited approved draft. CEN Document CEN/TC 250/SC 3 - N 671 E.Google Scholar
  24. Sibai, A. W. (1991). Semi-Rigid Joint Modelling For Nonlinear Analysis of Flexibly Connected Frames. Thesis No. 967, Ecole Polytechnique Fédérale, Lausanne.Google Scholar
  25. Tschemmernegg, F (1982). Zur Entwicklung der steifenlosen Stahlauweise. In Stahlbau 51, Vol. 7.Google Scholar
  26. Tschemmemegg, F.; Huber, K. (1987). Rahmentragwerke in Stahl unter besonderer Berücksichtigung der steifenlosen Bauweise. Österreichischer Stahlbauverband und Schweizerische Zentralstelle für Stahlbau.Google Scholar
  27. Tschemmemegg, F.; Huber, G.; Huter, M.; Rubin, D. (1997). Komponentenmethode und Komponentenversuche zur Entwicklung von Baukonstruktionen in Mischbauweise. In Stahlbau 66, Vol. 9.Google Scholar
  28. Tschemmernegg, F.; Huber, G.; Rubin, D. (1997). Classification of steel and composite joints. Document COST Cl/WD2/97–25, Innsbruck.Google Scholar
  29. Ungermann, D. (1990). Bemessungsverfahren für Vollwand-und Kastenträger unter besonderer Berücksichtigung des Stegverhaltens. Dissertation RWTH Aachen.Google Scholar
  30. Vandegans, D. (1995). Application of the component method according to Eurocode 3 to connections with threaded studs. Document COST Cl/WD2/95–21. Graz.Google Scholar
  31. Vandegans, D.; Jaspart, J. P. (1996). Influence of the post-limit stiffness of joints on the frame behaviour: (Plastic mechanism collapse mode) - first draft. Document COST Cl/WD2/96–03. Aachen.Google Scholar
  32. Wald, F.; Villanova, F.; Mazura, V. (1997). The rotational capacity prediction, an application of the component method, Document COST Cl/WD2/96–08. Helsinki.Google Scholar
  33. Xiao, Y. R. (1996). Available and Required Rotation Capacities for Composite Beams and Frames. Document COST C I /WD2/96–10. Aachen.Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • U. Kuhlmann
    • 1
  • F. Kühnemund
    • 1
  1. 1.University of StuttgartStuttgartGermany

Personalised recommendations