Advertisement

Gradient Dependent Fatigue Limit Criterion

  • V. P. Panoskaltsis
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 392)

Abstract

Experimental evidence has shown that the fatigue limit of metallic cylindrical specimens in fully reversed bending is significantly higher than the respective limit in fully reversed tension-compression. The higher values of the bending fatigue limits observed have to be attributed to the benign influence of the gradient of the bending normal stress on the fatigue strength of the metal. Although many approaches for modelling the gradient effect under uniaxial normal cyclic stress have already been tried, attempts to model the very same problem under multiaxial cyclic stress systems are scarce. The present paper starts re-analyzing existing experimental results under cyclic normal stress (i.e. bending, tension-compression) and under cyclic shear stress (i.e. torsion). This closer examination shows that, although the fatigue srength at very high lives is strongly affected by the gradient of the normal stress in bending tests, it remains insensitive to variations of the gradient of the shear stress in torsion tests. Based on these observations, a gradient dependent multiaxial high-cycle fatigue criterion function of the stress invariants is formulated.

Keywords

Fatigue Strength Fatigue Limit Hydrostatic Stress Torsion Test Gradient Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sines G. (1959). Behavior of metals under complex static and alternating stresses, In Metal Fatigue (G. Sines and J. L. Waisman Eds). McGraw Hill, New York, 145–169.Google Scholar
  2. 2.
    Crossland B. (1956). Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. In Proc. Int. Conf. on Fatigue of Metals, London-New York. Instistution of Mechanical Engineers, London, 138–149.Google Scholar
  3. 3.
    Findley W. N. (1959). A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. Trans. ASME, Series B, Journal of Engineering for Industry, Vol. 81, 301–305.Google Scholar
  4. 4.
    Dang Van K., (1993), Macro-micro approach in high-cycle fatigue, In Advances in Multiaxial Fatigue, ASTM STP 1191, (D. L. McDowell and R. Ellis Eds). American Society for Testing and Materials, Philadelphia, 120–130.Google Scholar
  5. 5.
    McDiarmid D. L. (1991). A general criterion for high-cycle multiaxial fatigue failure. Fatigue Fract. Engng Mater. Struct. Vol. 14, 429–453.CrossRefGoogle Scholar
  6. 6.
    Papadopoulos I. V., Davoli P., Gorla C., Filippini M. and Bernasconi A. (1997). A comparative study of multiaxial high-cycle fatigue criteria of metals. Int. J. Fatigue. Vol.19, 219–235.CrossRefGoogle Scholar
  7. 7.
    Papadopoulos I. V. (1994). A new criterion of fatigue strength for out-of-phase bending and torsion of hard metals. Int. J. Fatigue, Vol. 16, 377–384.CrossRefGoogle Scholar
  8. 8.
    Papadopoulos I. V. (1995). A high-cycle fatigue criterion applied in biaxial and triaxial out-of-phase stress conditions. Fatigue Fract. Engng Mater. Struct. Vol. 18,79–91.CrossRefGoogle Scholar
  9. 9.
    Moore H. F. and Morkovin D. (1942). Progress report on the effect of size of specimen on fatigue strength of three types of steel. Proc. ASTM. Vol. 42, 145–153.Google Scholar
  10. 10.
    Moore H. F. and Morkovin D. (1943). Second progress report on the effect of size of specimen on fatigue strength of three types of steel. Proc. ASTM, Vol. 43, 109–120.Google Scholar
  11. 11.
    Moore H. F. and Morkovin D. (1944). Third progress report on the effect of size of specimen on fatigue strength of three types of steel. Proc. ASTM, Vol. 44, 137–158.Google Scholar
  12. 12.
    Moore H. F. (1945). A study of size effect and notch sensitivity in fatigue tests of steel. Proc. ASTM, Vol. 45, 507–531.Google Scholar
  13. 13.
    Cazaud R. (1952). Contribution à l’étude de l’effet de dimension dans les essais de fatigue des métaux. Résultats statistiques. La Metallurgia Italiana, Vol. 10, 512–517.Google Scholar
  14. 14.
    Massonnet Ch. (1955). Le dimensionnement des pièces de machines soumises à la fatigue. Contribution expérimentale à l’étude de l’effet de l’échelle et des entailles. Revue Universelle des Mines. Vol. 9, 203–222.Google Scholar
  15. 15.
    Massonnet Ch. (1956). The effect of size, shape and grain size on the fatigue strength of medium carbon steel. Proc. ASTM, Vol. 56, 954–978.Google Scholar
  16. 16.
    Pogoretskii R. G. and Karpenko G. V. (1965). Effect of test piece length on the fatigue strength of steel in air. Fiziko-khimicheskaya mekhanika materialov. Vol. 1, 90–94.Google Scholar
  17. 17.
    Pavan A. (1979). Contribution aux calculs d’organes d’ensembles mécaniques par rapport à la limite de fatigue. Explication des principaux facteurs, Thèse de Doctorat es Sciences. Université de Reims, Reims.Google Scholar
  18. 18.
    Brand A. and Sutterlin R. (1980). Calcul des pièces à la fatigue — Méthode du gradient. Publications CETIM, Senlis, France.Google Scholar
  19. 19.
    Flavenot J. F. and Skalli N. (1983). L’épaisseur de couche critique ou une nouvelle approche du calcul en fatigue des structures soumises à des sollicitations multiaxiales. Mécanique, Matériaux, Electricité. No. 397, 15–25.Google Scholar
  20. 20.
    Munday E. G. and Mitchell L. D. (1989). The maximum-distortion-energy ellipse as a biaxial fatigue criterion in view of gradient effects. Experimental Mechanics, 12–15.Google Scholar
  21. 21.
    Sawert W. (1943). Verhalten der Baustähle bei wechselnder mehrachsiger Beanspruchung. Z.V.D.I. Vol. 87, 609–615.Google Scholar
  22. 22.
    Papadopoulos I. V. and Panoskaltsis V. P. (1994). Gradient dependent multiaxial high-cycle fatigue criterion. In Multiaxial Fatigue and Design, ESIS Publication 21 (A. Pineau, G. Cailletaud and T. C. Lindley Eds). Mechanical Engineering Publications, London, 349–364.Google Scholar
  23. 23.
    Findley W. N., Coleman J. J. and Hanley B. C. (1956). Theory for combined bending and torsion fatigue with data for SAE 4340 steel. In Proc. Int. Conf. on Fatigue of Metals, London-New York. Instistution of Mechanical Engineers, London, 150–157.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • V. P. Panoskaltsis
    • 1
  1. 1.Case Western Reserve UniversityClevelandUSA

Personalised recommendations