Advertisement

Fatigue Design in Automotive Industry

  • A. Bignonnet
Part of the International Centre for Mechanical Sciences book series (CISM, volume 392)

Abstract

The context of fatigue design in the automotive industry is presented. Emphasis is given to High Cycle Fatigue, taking into account the multiaxiahty of stresses. The fatigue assessment of components with surface treatments and of welded components is also discussed.

Keywords

Fatigue Strength Automotive Industry Fatigue Limit High Cycle Fatigue Residual Stress Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morel, F., Mercier, J., Catherin, G., Bignonnet, A. and Petit, J. (1993). Analyse du comportement en fatigue de composants ‘mécaniques par l’approche du chargement équivalent. In Proc. Sollicitations en service et comportement en fatigue, Paris 25–26 mai 1993. Pub. SF2M.Google Scholar
  2. 2.
    Sines, G. (1959). Behaviour of metals under complex static and alternating stresses. In: Metal Fatigue, Ed. Sines, G. and Waisman, J.L., Mc Graw Hill, New York, 145–169.Google Scholar
  3. 3.
    Mc Diarmid, D.L. (1991). A general criterion for high cycle multiaxial fatigue. Fatigue Fract. Engng.Mat. Struct., Vol. 14, 429–453.CrossRefGoogle Scholar
  4. 4.
    Dang-Van, K., (1973). Sur la résistance à la fatigue des métaux. Sciences et Techniques de l’Armement, 3ème fascicule, 647–722.Google Scholar
  5. 5.
    Ballard, P., Dang-Van, K., Deperrois, A. and Papadopoulos, I.V. (1995). Hich cycle fatigue and finite element analysis. Fatigue Fract. Engng Mater. Struct. Vol 18, 397–411.CrossRefGoogle Scholar
  6. 6.
    Dang-Van, K. and Maitournam, M.H. (1993). Steady state flow in classic elastoplasticity: applications to repeated rolling and sliding contact. J. Mech. Phys. Solids, Vol.41, 1691–1710.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Zarka, J., Frelat, J., Inglebert, G. and Kasmai’-Navidi (1988). In A new approach in elastic analysis of structures. Martinus Nijhoff Pub.Google Scholar
  8. 8.
    Mc Dowell, D.L., (1996). Basic issues in the mechanics of high cycle metal fatigue. Int. J. of Fatigue, Vol. 80, 103–145.Google Scholar
  9. 9.
    Radenkovic, D. (1981) Stress Analysis in tubular joints. Proc. Int. Conf., Steel in Marine Structures, 71–118, Paris. DOC EUR 7347 Pub. IRSID- France.Google Scholar
  10. 10.
    Bui, H. D. (1983). Problèmes généraux de croissance de fissure. Partie I, approche de l’endommagement. Revue Française de Mécanique, Vol. 4, 3–7.Google Scholar
  11. 11.
    Bui, H. D. and Dang Van, K. (1987). Some recently developed aspects of Fracture Mechanics. Nuclear Engineering and Design, Vol. 105, 3–12.CrossRefGoogle Scholar
  12. 12.
    Fayard, J-L., Bignonnet, A. and Dang-Van, K. (1995) Fatigue design of welded thin sheet structures. In Proc, Fatigue Design ‘95, Ed. Marquis, G. and Solin, J., Helsinki, Finland, 5–8 Sept. 1995. To be published by M.E.P.Google Scholar
  13. 13.
    Fayard, J-L., Bignonnet, A. and Dang Van, K. (1996). Fatigue Design Criterion for Welded Structures. Fatigue Fract. Engng Mater. Struct., Vol. 19, 723–229.CrossRefGoogle Scholar
  14. 14.
    Rupp, A., Störzel, K. and Grubisic, V. (1995). Computer Aided Dimensioning of spot welded Automotive structures. SAE paper 950711.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • A. Bignonnet
    • 1
  1. 1.PSA Peugeot CitroënVélizyFrance

Personalised recommendations