Introduction to Fatigue Analysis in Mechanical Design by the Multiscale Approach

  • K. Dang Van
Part of the International Centre for Mechanical Sciences book series (CISM, volume 392)


Crack initiation under high cycle fatigue is a localized phenomenon that occurs in some highly stressed grains of the metallic material. Therefore, the study of high cycle fatigue problems in a rational way is best performed by the introduction of the mesoscopic scale of material description (i.e. the scale of the metal grains of a metallic aggregate) in addition to the usual macroscopic scale of continuum mechanics. The principles of such a multiscale approach in high-cycle fatigue of metallic structures are presented in this work. The multiscale approach is settled on the assumption that under high-cycle fatigue loading a structure will not be fractured by fatigue if an elastic shakedown state is reached at the macroscopic as well as at the mesoscopic scale. The concept of the fatigue limit criterion coincides thus with the possibility of a cyclically loaded structure to tend to an elastic shakedown state at all scales. Extensions of Melan’s elastic shakedown theorem to realistic material behaviour are discussed in this article. These theorems allow an easy estimation of the mechanical parameters at the elastic shakedown state at both the macroscopic and mesoscopic scales. Some examples of application of the extended Melan’s theorem are provided. The relationships between mesoscopic and macroscopic quantities are studied within the framework of undamaged as well as damaged materials. In the case of undamaged materials, some additional assumptions allow to link the mesoscopic quantities to the usual (macroscopic) stresses and strains through closed form relationships.


Fatigue Limit High Cycle Fatigue Fatigue Crack Initiation Macroscopic Stress Fatigue Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kitagawa, H. and Takahashi, S., (1976), Applicability of Fracture Mechanics to very Small Cracks or Cracks in the Early Stage, Proc. 2nd Int. Conf Mech. Behav. of Materials, (ICM2), Boston, Mass., 627–631.Google Scholar
  2. 2.
    McDowell D. L., (1996), Basic Issues in the Mechanics of High Cycle Metal Fatigue, Int. J. of Fracture, Vol. 80, 103–145,CrossRefGoogle Scholar
  3. 3.
    Bui H.D., (1969), Etude de l’Evolution de la Frontière du Domaine Elastique avec Ecrouissage et Relations de Comportement Elastoplastique des Métaux Cubiques, Thèse de Doctorat ès Sciences Physiques, Paris.Google Scholar
  4. 4.
    Bui H.D., Dang Van K., Stolz C., (1982), Relations entre Grandeurs Microscopiques et Macroscopiques, C.R. Acad. Sci. Paris, tome 292, série II, 1155–1158.Google Scholar
  5. 5.
    Stolz C., (1996), Large Deformation of Polycrystals, in Large Plastic Deformation of Crystalline Aggregates, C. Teodosiu ed., CISM, Springer-Verlag.Google Scholar
  6. 6.
    Chaboche J.L., Cordier G., Dang Van K., (1979), Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel, Proc. of 5th Structural Mech. in Reactor Technology (SMIRT 5), Berlin.Google Scholar
  7. 7.
    Halphen B., (1978), Problèmes Quasistatiques en Viscoplasticité, Thèse de Doctorat es Sciences Mathématiques, Université Pierre et Marie Curie, Paris.Google Scholar
  8. 8.
    Bower A.F., (1989), Cyclic Hardening Properties of Hard Drawn Copper and Rail Steel, J., Mech Phys. Solids, Vol. 37, 455–470.CrossRefGoogle Scholar
  9. 9.
    Bower A.F., Johnson K.L., (1989), The Influence of Strain Hardening on Cumulative Plastic Deformation in Rolling and Sliding Line Contact, J. Mech Phys. Solids, Vol. 37, 471.493.Google Scholar
  10. 10.
    Mandel J., Halphen B. Zarka J., (1977), Adaptation d’une Structure Elastoplastique à Ecrouissage Cinématique, Mech. Res. Comm. , 4, 309–314.CrossRefMATHGoogle Scholar
  11. 11.
    Garud Y. S. Multiaxial Fatigue: A Survey of the State of the Art, J. Testing Evaluation, Vol. 9, 165–178.Google Scholar
  12. 12.
    Orowan E., (1939), Theory of the Fatigue of Metals, Proc. Roy. Soc, London, A, Vol. 171, 79–106.CrossRefMATHGoogle Scholar
  13. 13.
    Dang Van K., (1973), Sur la Résistance à la Fatigue des Métaux, Sciences et Techniques de l’Armement, Mémorial de l’Artillerie Française, 3ème fascicule, Paris.Google Scholar
  14. 14.
    Dang Van K., Griveau B., Message O., (1989), On a New Multiaxial Fatigue Limit Criterion: Theory and Application, Biaxial and Multiaxial Fatigue, EGF3 (Edited by M. W. Brown and K.J. Miller) Mechanical Engineering Publication, London, 479–496.Google Scholar
  15. 15.
    Dang Van K., (1993), Macro-Micro Approach in High Cycle Fatigue, Advances in Multiaxial Fatigue, ASTM STP 1191, D. L. McDowell and R. Ellis, Eds., American Society for Testing and Materials, Philadelphia, 120–130.Google Scholar
  16. 16.
    Papadopoulos I.V., (1987), Fatigue Polycyclique des Métaux: Une nouvelle Approche, Thèse de Doctorat, Ecole Nationale des Ponts et Chaussées, Paris.Google Scholar
  17. 17.
    Papadopoulos I.V., (1996), Exploring the high-cycle fatigue behaviour of metals from the mesoscopic scale, J. Mech. Behavior Mater., Vol. 6, 93–118.CrossRefGoogle Scholar
  18. 18.
    Papadopoulos I.V., (1995), A high-cycle fatigue criterion applied in biaxial and triaxial out-of-phase stress conditions, Fatigue Fract. Engng Mater. Struct., Vol. 18, 79–91.CrossRefGoogle Scholar
  19. 19.
    Papadopoulos I.V., (1994), A new criterion of fatigue strength for out-of-phase bending and torsion of hard metals, Int. J. Fatigue, Vol. 16, 377–384.CrossRefGoogle Scholar
  20. 20.
    Papadopoulos I.V., Davoli P., Gorla C., Filippini M. and Bernasconi A., (1997), A comparative study of multiaxial high-cycle fatigue criteria for metals, Int. J. Fatigue, Vol. 19, 219–235.CrossRefGoogle Scholar
  21. 21.
    Ballard P., Dang Van K., Deperrois A. and Papadopoulos LV., (1995), High Cycle Fatigue and Finite Element Analysis, Fatigue Fract. Engng. Mater. Struct., Vol. 18, 397–411.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • K. Dang Van
    • 1
  1. 1.École PolytechniquePalaiseauFrance

Personalised recommendations