Principles of Current Methodologies in High-Cycle Fatigue Design of Metallic Structures

  • P. Davoli
Part of the International Centre for Mechanical Sciences book series (CISM, volume 392)


The mechanisms of the fatigue failure of metals are outlined on the basis of the classical failure hypotheses of crack nucleation and propagation. The classical tools for fatigue design are illustrated: Wöhler diagram, high-cycle and low-cycle fatigue fields, Paris equation for fatigue crack growth rate. The usual fatigue design criteria and the approaches to fatigue analysis are described: infinite life, safe-life, damage-tolerant criteria and stress-life, strain life and linear elastic fracture mechanics approaches. Then the typical high-cycle fatigue design processes are analysed in detail: utilisation of the Wöhler diagram, mean stress effect, material data, notch and gradient effect, technological size effect, surface effect, multiaxial loading and variable amplitude loads. In conclusion a review of standards for fatigue design and a brief guide to fatigue bibliography (books, magazines, proceedings of conferences) are given.


Fatigue Life Fatigue Limit Fatigue Failure High Cycle Fatigue Fatigue Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. J. E. Forsyth, The physical basis of metal fatigue, Blackie and Son Limited, London, 1969.Google Scholar
  2. [2]
    H. O. Fuchs, R. I. Stephens, Metal fatigue in engineering, John Wiley&Sons, New York, 1980.Google Scholar
  3. [3]
    K. J. Miller, The short crack problem, in “Fatigue of Engineering Materials and Structures”, vol. 5 n. 3, 1982.Google Scholar
  4. [4]
    S. Beretta, Valutazione della resistenza a fatica in presenza di difetti (Fatigue strength evaluation of components containing defects), in “La Metallurgia italiana”, vol. 88, n. 5/1996.Google Scholar
  5. [5]
    M. Ohnami, Fracture and Society, IOS Press, Amsterdam, 1992.Google Scholar
  6. [6]
    W. Schütz, J. W. Bergmann, Fatigue design and its economic implications, IABG, 1996; translated in italian and published on “II Progettista Industriale”, Tecniche Nuove, marzo 1997.Google Scholar
  7. [7]
    D. Radaj, Ermüdungsfestigkeit, Springer-Verlag, Berlin, 1995.CrossRefGoogle Scholar
  8. [8]
    J. A. Bannantine, J. J. Corner, J. L. Handrock, Fundamentals of metal fatigue analysis, Prentice Hall, Englewood Cliffs, 1990.Google Scholar
  9. [9]
    Walther Schütz, A History of fatigue, “Engineering Fracture Mechanics”, vol. 54 n. 2, 1966.Google Scholar
  10. [10]
    MIL-A-83444 (USAF), Military specification — Airplane Damage Tolerance Requirements, 2 July 1974.Google Scholar
  11. [11]
    E. Zahavi, V. Torbilo, Fatigue design, CRC Press, New York, 1996.Google Scholar
  12. [12]
    J. Schijve, Stress gradients around notches, in Fat. Engng. Mat. Sc, Vol. 3, no. 4, 1980.Google Scholar
  13. [13]
    H. E. Boyer (ed.), Atlas of Fatigue Curves, American Society of Metals, Metals Park, Ohio, 1986.Google Scholar
  14. [14]
    ”Databook on fatigue strength of metallic materials”, The Society of Materials Science, Japan, published in English by Elsevier, 1993.Google Scholar
  15. [15]
    R. E. Peterson (Stress Concentration Design Factors, 1953, and Stress Concentration Factors, 1974), John Wiley&Sons.Google Scholar
  16. [16]
    W. D. Pilkey, Peterson’s stress concentration factors, second edition, Wiley&Sons, New York, 1997.CrossRefGoogle Scholar
  17. [17]
    M. Filippini, Un’analisi critica dei criteri di resistenza a fatica multiassiale (A critical analysis of multiaxial fatigue criteria), Graduate Thesis, Academic Year 1993–94, Dipartimento di Meccanica, Politécnico di Milano.Google Scholar
  18. [18]
    A. Buch, Fatigue Strength Calculation, Trans Tech Publications, 1988.Google Scholar
  19. [19]
    A. Sigwart, W. Fessenmeyer, Oberfläche und Randschicht, in VDI Berichte 1227, VDI Verlag, 1995.Google Scholar
  20. [20]
    H. J. Gough, H. V. Pollard, W. J. Clenshaw, Some experiments on the Resistance of Metals to Fatigue under Combined Stress, HMSO, London, 1951.Google Scholar
  21. [21]
    G. Sines, Behavior of Metals under Complex Static and Alternating Stresses, Chap. 7 of: Sines and Waisman ed., Metal Fatigue, Mc-Graw Hill, 1959.Google Scholar
  22. [22]
    Y. S. Garud, Multiaxial Fatigue: A Survey of the State of the Art, “Journal of Testing and Evaluation”, vol. 9 n. 3, 1981.Google Scholar
  23. [23]
    ISO 1143 (1975) Metals — Rotating bar bending fatigue testing. Google Scholar
  24. [24]
    ISO 1099 (1975) Metals — Axial load fatigue testing. Google Scholar
  25. [25]
    ISO 1352 (1977) Steel — Torsional stress fatigue testing. Google Scholar
  26. [26]
    B. Atzori, L’evoluzione del concetto di fatica e le normative ISO di prova dei materiali metallici, “Notiziario AIAS”, n. 83, marzo 1997.Google Scholar
  27. [27]
    ISO 6336 Calculation of load capacity of spur and helical gears, 1996.Google Scholar
  28. [28]
    ANSI ASME B106.1M 1985 Design of Transmission Shafting. Google Scholar
  29. [29]
    Rechnerischer Festigkeitsnachweis für Maschinenbauteile — Richtlinie, Festigkeitsnachweis, Vorharben Nr. 154, Forschungskuratorium Maschinenbau e.V., Frankfurt, 1993.Google Scholar
  30. [30]
    Fatigue Design Handbook, second edition, SAE, Warrendale, 1988.Google Scholar
  31. [31]
    Eurocode No. 3 — Common unified rules for steel structures, 1984, Chapter 9, “Fatigue”. Google Scholar
  32. [32]
    J. Brozzetti, Basic fatigue design concepts in Eurocode 3, “Seminar on Eurocode — 3, Design of steels structures”, Timisoara, 9–15 June 1993.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • P. Davoli
    • 1
  1. 1.Polytechnic of MilanMilanItaly

Personalised recommendations