Skip to main content

Principles of Current Methodologies in High-Cycle Fatigue Design of Metallic Structures

  • Conference paper
  • 542 Accesses

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 392))

Abstract

The mechanisms of the fatigue failure of metals are outlined on the basis of the classical failure hypotheses of crack nucleation and propagation. The classical tools for fatigue design are illustrated: Wöhler diagram, high-cycle and low-cycle fatigue fields, Paris equation for fatigue crack growth rate. The usual fatigue design criteria and the approaches to fatigue analysis are described: infinite life, safe-life, damage-tolerant criteria and stress-life, strain life and linear elastic fracture mechanics approaches. Then the typical high-cycle fatigue design processes are analysed in detail: utilisation of the Wöhler diagram, mean stress effect, material data, notch and gradient effect, technological size effect, surface effect, multiaxial loading and variable amplitude loads. In conclusion a review of standards for fatigue design and a brief guide to fatigue bibliography (books, magazines, proceedings of conferences) are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. E. Forsyth, The physical basis of metal fatigue, Blackie and Son Limited, London, 1969.

    Google Scholar 

  2. H. O. Fuchs, R. I. Stephens, Metal fatigue in engineering, John Wiley&Sons, New York, 1980.

    Google Scholar 

  3. K. J. Miller, The short crack problem, in “Fatigue of Engineering Materials and Structures”, vol. 5 n. 3, 1982.

    Google Scholar 

  4. S. Beretta, Valutazione della resistenza a fatica in presenza di difetti (Fatigue strength evaluation of components containing defects), in “La Metallurgia italiana”, vol. 88, n. 5/1996.

    Google Scholar 

  5. M. Ohnami, Fracture and Society, IOS Press, Amsterdam, 1992.

    Google Scholar 

  6. W. Schütz, J. W. Bergmann, Fatigue design and its economic implications, IABG, 1996; translated in italian and published on “II Progettista Industriale”, Tecniche Nuove, marzo 1997.

    Google Scholar 

  7. D. Radaj, Ermüdungsfestigkeit, Springer-Verlag, Berlin, 1995.

    Book  Google Scholar 

  8. J. A. Bannantine, J. J. Corner, J. L. Handrock, Fundamentals of metal fatigue analysis, Prentice Hall, Englewood Cliffs, 1990.

    Google Scholar 

  9. Walther Schütz, A History of fatigue, “Engineering Fracture Mechanics”, vol. 54 n. 2, 1966.

    Google Scholar 

  10. MIL-A-83444 (USAF), Military specification — Airplane Damage Tolerance Requirements, 2 July 1974.

    Google Scholar 

  11. E. Zahavi, V. Torbilo, Fatigue design, CRC Press, New York, 1996.

    Google Scholar 

  12. J. Schijve, Stress gradients around notches, in Fat. Engng. Mat. Sc, Vol. 3, no. 4, 1980.

    Google Scholar 

  13. H. E. Boyer (ed.), Atlas of Fatigue Curves, American Society of Metals, Metals Park, Ohio, 1986.

    Google Scholar 

  14. ”Databook on fatigue strength of metallic materials”, The Society of Materials Science, Japan, published in English by Elsevier, 1993.

    Google Scholar 

  15. R. E. Peterson (Stress Concentration Design Factors, 1953, and Stress Concentration Factors, 1974), John Wiley&Sons.

    Google Scholar 

  16. W. D. Pilkey, Peterson’s stress concentration factors, second edition, Wiley&Sons, New York, 1997.

    Book  Google Scholar 

  17. M. Filippini, Un’analisi critica dei criteri di resistenza a fatica multiassiale (A critical analysis of multiaxial fatigue criteria), Graduate Thesis, Academic Year 1993–94, Dipartimento di Meccanica, Politécnico di Milano.

    Google Scholar 

  18. A. Buch, Fatigue Strength Calculation, Trans Tech Publications, 1988.

    Google Scholar 

  19. A. Sigwart, W. Fessenmeyer, Oberfläche und Randschicht, in VDI Berichte 1227, VDI Verlag, 1995.

    Google Scholar 

  20. H. J. Gough, H. V. Pollard, W. J. Clenshaw, Some experiments on the Resistance of Metals to Fatigue under Combined Stress, HMSO, London, 1951.

    Google Scholar 

  21. G. Sines, Behavior of Metals under Complex Static and Alternating Stresses, Chap. 7 of: Sines and Waisman ed., Metal Fatigue, Mc-Graw Hill, 1959.

    Google Scholar 

  22. Y. S. Garud, Multiaxial Fatigue: A Survey of the State of the Art, “Journal of Testing and Evaluation”, vol. 9 n. 3, 1981.

    Google Scholar 

  23. ISO 1143 (1975) Metals — Rotating bar bending fatigue testing.

    Google Scholar 

  24. ISO 1099 (1975) Metals — Axial load fatigue testing.

    Google Scholar 

  25. ISO 1352 (1977) Steel — Torsional stress fatigue testing.

    Google Scholar 

  26. B. Atzori, L’evoluzione del concetto di fatica e le normative ISO di prova dei materiali metallici, “Notiziario AIAS”, n. 83, marzo 1997.

    Google Scholar 

  27. ISO 6336 Calculation of load capacity of spur and helical gears, 1996.

    Google Scholar 

  28. ANSI ASME B106.1M 1985 Design of Transmission Shafting.

    Google Scholar 

  29. Rechnerischer Festigkeitsnachweis für Maschinenbauteile — Richtlinie, Festigkeitsnachweis, Vorharben Nr. 154, Forschungskuratorium Maschinenbau e.V., Frankfurt, 1993.

    Google Scholar 

  30. Fatigue Design Handbook, second edition, SAE, Warrendale, 1988.

    Google Scholar 

  31. Eurocode No. 3 — Common unified rules for steel structures, 1984, Chapter 9, “Fatigue”.

    Google Scholar 

  32. J. Brozzetti, Basic fatigue design concepts in Eurocode 3, “Seminar on Eurocode — 3, Design of steels structures”, Timisoara, 9–15 June 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Davoli, P. (1999). Principles of Current Methodologies in High-Cycle Fatigue Design of Metallic Structures. In: Van, K.D., Papadopoulos, I.V. (eds) High-Cycle Metal Fatigue. International Centre for Mechanical Sciences, vol 392. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2474-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2474-1_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83144-1

  • Online ISBN: 978-3-7091-2474-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics