Nonlinear Surface Acoustic Waves and Waves on Stratified Media

  • D. F. Parker
Part of the CISM Courses and Lectures book series (CISM, volume 341)


Sections 1 and 2 proceed from Rayleigh wave theory for isotropic elasticity to an overview of linear and nonlinear surface waves on uniform anisotropic elastic and electro-elastic half-spaces. Section 3 concerns layering effects—in particular the existence of a shear-horizontal (Love) mode and the dispersion of the generalized Rayleigh mode. Section 4 outlines treatments of waves travelling along a wedge tip and of surface waves influenced by corrugation of the traction-free surface. Section 5 reformulates some of the previously-derived nonlinear evolution equations in terms of a physically relevant surface displacement, rather than its Fourier transform. This reveals the essentially non-local nature of the nonlinear evolution equations for surface waves, so distinguishing them from many others treated in this volume.


Surface Wave Rayleigh Wave Depth Function Surface Acoustic Wave Solvability Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parker, D.F. and Talbot, F.M.: Nonlinear elastic surface waves, in: Nonlinear Deformation Waves, (Eds. U. Nigul and J. Engelbrecht), Springer, Berlin-Heidelberg 1983, 397–403CrossRefGoogle Scholar
  2. 2.
    Parker, D.F. and Talbot, F.M.: Analysis and computation for nonlinear elastic waves of permanent form, J.Elast., 15 (1985) 389–426.CrossRefGoogle Scholar
  3. 3.
    Chadwick, P.: Surface and interfacial waves of arbitrary form in isotropic elastic media, J.Elast., 6 (1976) 73–80.CrossRefGoogle Scholar
  4. 4.
    Farnell, G.W. and Adler, E.L.: Elastic wave propagation in thin layers, in: Physical Acoustics IX (Eds. W.P. Mason and R.N. Thurston ), Academic Press, New York, 1972, 35–127.Google Scholar
  5. 5.
    Lord Rayleigh (J.W. Strutt): On waves propagating along the plane surface of an elastic solid, Proc. Lond. Math. Soc. 17 (1885) 4–10.Google Scholar
  6. 6.
    Achenbach, J.D.: Wave Propagation in Elastic Solids, North Holland, Amsterdam 1973.Google Scholar
  7. 7.
    Minorsky, N.: Nonlinear Oscillations, Van Nostrand, Princeton 1962.Google Scholar
  8. 8.
    Nayfeh, A.: Perturbation Methods, Wiley-Interscience, New York 1973.Google Scholar
  9. 9.
    Jordan, D.W. and Smith, P.: Nonlinear Ordinary Differential Equations, Clarendon Press, Oxford 1987.Google Scholar
  10. 10.
    Taniuti, T. and Nishihara, K.: Nonlinear Waves, Pitman, London 1977.Google Scholar
  11. 11.
    Jeffrey, A. and Kawahara, T.: Asmyptotic Methods in Nonlinear Wave Theory, Pitman, London 1982.Google Scholar
  12. 12.
    Engelbrecht, J.K., Fridman, V.E. and Pelinovski, E.N.: Nonlinear Evolution Equations, Longman, Harlow 1988.Google Scholar
  13. 13.
    Maugin, G.A.: Nonlinear Electromechanical Effects and Applications, World Scientific, Singapore 1985.Google Scholar
  14. 14.
    Parker, D.F.: Waveform evolution for nonlinear surface acoustic waves, Int. J. Engng. Sci. 26 (1988) 59–75.CrossRefGoogle Scholar
  15. 15.
    Lardner, R.W.: Nonlinear surface waves on an elastic solid, Int. J. Engng. Sci. 21 (1983) 1331–1342.CrossRefGoogle Scholar
  16. 16.
    Lardner, R.W.: Nonlinear surface waves on an elastic solid of general anisotropy, J. Elast. 16 (1986) 63–73.CrossRefGoogle Scholar
  17. 17.
    Maradudin, A.A. and Mayer, A.P.: Surface acoustic waves on nonlinear substrates, in: Nonlinear Waves in Solid State Physics, (Eds. A.D. Boardman, M. Bertolotti and T. Twardowski ), Plenum, New York 1991, 113–161.Google Scholar
  18. 18.
    Parker, D.F., Mayer A.P. and Maradudin, A.A.: The projection method for nonlinear surface acoustic waves, Wave Motion 16 (1992) 151–162.CrossRefGoogle Scholar
  19. 19.
    Parker D.F. and David E.A.: Nonlinear piezoelectric surface waves, Int. J. Engng. Sci. 27 (1989) 565–581.CrossRefGoogle Scholar
  20. 20.
    David, E.A. and Parker, D.F.: Nonlinear evolution of piezoelectric SAWs, in: Recent Developments in Surface Acoustic Waves, (Eds. D.F. Parker and G.A. Maugin ), Springer, Berlin-Heidelberg 1988, 21–29.CrossRefGoogle Scholar
  21. 21.
    Lardner, R.W.: Waveform distortion and shock development in nonlinear Rayleigh waves, Int. J. Engng. Sci. 23 (1985) 113–118.CrossRefGoogle Scholar
  22. 22.
    Harvey, A.P. and Tupholme, G.E.: Propagation of anisotropic elastic and piezo-electric nonlinear surface acoustic waves, Wave Motion 16 (1992) 125–135.CrossRefGoogle Scholar
  23. 23.
    John, F.: Plane strain problems for a perfectly elastic material of harmonic type, Comm. Pure Appl. Math. 13 (1960) 239–296.Google Scholar
  24. 24.
    Maerfeld, C.: Rayleigh wave non-linear components, in: Rayleigh Wave Theory and Applications, (Eds. E.A. Ash and E.G.S. Paige ), Springer, Berlin-Heidelberg 1985, 191–218.CrossRefGoogle Scholar
  25. 25.
    Morgan, D.P.: Surface-wave Devices for Signal Processing, Elsevier, Amsterdam 1985.Google Scholar
  26. 26.
    Gulyaev, Yu.V.: Electroacoustic surface waves in solids, Soviet Phys. JETP Lett. 9 (1969) 37–38.Google Scholar
  27. 27.
    Bleustein, G.: A new surface wave in piezoelectric materials, Appl. Phys. Lett. 13 (1968) 412–413.Google Scholar
  28. 28.
    Harvey, A.P., Graine, R.E. and Syngellakis, S.: Propagation of nonlinear surface acoustic waves on elastic and piezoelectric solids, J. Mech. Phys. Solids 40 (1992) 1529–42.CrossRefGoogle Scholar
  29. 29.
    David, E.A. and Parker, D.F.: Nondistorting waveforms of electroelastic surface waves, Wave Motion 12 (1990) 315–327.CrossRefGoogle Scholar
  30. 30.
    Parker D.F.: The dispersion of nonlinear elastic surface waves, in: Proceedings of the Third Symposium on Waves and Stability in Continuous Media, (Eds. M. Maellaro and L. Palese ), Univ. of Bari 1989, 327–350.Google Scholar
  31. 31.
    Kalyanasundaram, N., Parker, D.F. and David, E.A.: The spreading of nonlinear elastic surface waves, J. Elast. 24 (1990) 79–103.CrossRefGoogle Scholar
  32. 32.
    Parker, D.F. and David, E.A.: Spreading of nonlinear surface waves on piezoelectric solids, in: Elastic Wave Propagation, (Eds. M.F. McCarthy and M.A. Hayes ), Elsevier, Amsterdam 1989, 125–131.Google Scholar
  33. 33.
    Brekhovskikh, L.M.: Waves in Stratified Media, 2nd. ed., Academic Press, New York 1980.Google Scholar
  34. 34.
    Tolstoy, I. and Clay, C.S.: Ocean Acoustics, McGraw-Hill, New York 1966.Google Scholar
  35. 35.
    Leble, S.B.: Nonlinear Waves in Waveguides, Springer, Berlin 1991.CrossRefGoogle Scholar
  36. 36.
    Ewing, W.M., Jardetzky, W.S. and Press, F.: Elastic Waves in Layered Media, McGraw-Hill, New York 1957.Google Scholar
  37. 37.
    Kalyanasundaram, N.: Finite-amplitude Love-waves on an isotropic layered half-space, Int. J. Engng. Sci. 19 (1981) 287–293.CrossRefGoogle Scholar
  38. 38.
    Battaille, K. and Lund, F.: Nonlinear waves in elastic media, Physica 6D (1982) 95–104.Google Scholar
  39. 39.
    Maradudin, A.A.: Nonlinear surface acoustic waves and their associated surface acoustic solitons, in: Recent Developments in Surface Acoustic Waves, (Eds. D.F. Parker and G.A. Maugin ), Springer, Berlin-Heidelberg 1988, 62–71.CrossRefGoogle Scholar
  40. 40.
    Maugin, G.A.: Linear and nonlinear SH surface acoustic waves, in: Surface Waves in Solids and Layered Structures, (Eds. M. Borissov, L. Spassov, Z. Georgiev and I. Avramov ), World Scientific, Singapore 1990, 215–229.Google Scholar
  41. 41.
    Maugin, G.A.: Physical and mathematical models of nonlinear waves in solids, in this volume.Google Scholar
  42. 42.
    Craik, A.D.D.: Wave Interactions and Fluid Flows, Cambridge 1985.Google Scholar
  43. 43.
    Parker, D.F.: Nonlinear surface acoustic waves on elastic and piezoelectric materials, in: Surface Waves in Solids and Layered Structures, (Eds. M. Borissov, L. Spassov, Z. Georgiev and I. Avramov, pp. 389–405, World Scientific, Singapore 1990.Google Scholar
  44. 44.
    Mozhaev, V.G.: A new type of surface acoustic waves in solids due to nonlinear elasticity, Phys. Lett. A 139 (1989) 333–337.CrossRefGoogle Scholar
  45. 45.
    Boardman, A.D., Egan, P., Twardowski, T. and Wilkins, M.: Nonlinear surface-guided waves in self-focusing optical media, in: Nonlinear Waves in Solid State Physics, (Eds. A.D. Boardman, M. Bertolotti and T. Twardowski ), Plenum, New York 1991, 1–50.Google Scholar
  46. 46.
    Lagasse, P.E.: Analysis of a dispersion free guide for elastic waves, Electronics Lett. 8 (1972) 372–373.CrossRefGoogle Scholar
  47. 47.
    Maradudin, A.A., Wallis, R.F., Mills, D.L. and Ballard, R.L.: Vibrational edge modes in finite crystals, Phys. Rev. B6 (1972) 1106–1111.Google Scholar
  48. 48.
    McKenna, J., Boyd, G.D. and Thurston, R.N.: Plate theory solution for guided flexural acoustic waves along the tip of a wedge, IEEE Trans. on Sonics and Ultrasonics 26 (1974) 178–186.CrossRefGoogle Scholar
  49. 49.
    Parker, D.F., Krylov, V.V. and Mayer, A.P.: Nonlinear propagation of elastic wedge waves, in preparation.Google Scholar
  50. 50.
    Krylov, V.V. and Parker, D.F.: Harmonic generation and parametric mixing in wedge acoustic waves, Wave Motion 15 (1992) 185–200.CrossRefGoogle Scholar
  51. 51.
    Mayer, A.P., Mozhaev, V.G., Krylov, V.V. and Parker, D.F.: Nonlinear acoustic waves in a slender wedge, to appear in: Nonlinear Coherent Structures in Physics and Biology, (Eds. F.G. Mertens and K.H. Spatschek, Plenum, New York, 1994.Google Scholar
  52. 52.
    Parker, D.F.: Elastic wedge waves, J. Mech. Phys. Solids 40 (1992) 1583–1593.CrossRefGoogle Scholar
  53. 53.
    Krylov, V.V.: Geometrical-acoustics approach to the description of localized vibrational modes of an elastic wedge, Sov. Phys.-Tech. Phys. 35 (1990) 137–140.Google Scholar
  54. 54.
    Mayer, A.P., Zierau, W. and Maradudin, A.A.: Surface acoustic waves propagating along the grooves of a periodic grating, J. Appl. Phys. 69 (1991) 1942–1947.CrossRefGoogle Scholar
  55. 55.
    Sammon, P.J.: Nonlinear elastic surface waves on periodically corrugated surfaces, in preparation.Google Scholar
  56. 56.
    Hunter, J.K.: Nonlinear surface waves, in: Current Progress in Hyperbolic Systems, Riemann Problems and Computations, (Ed. W.B. Lindquist ), Amer.Math.Sec., Providence R.I. 1989, 185–202.CrossRefGoogle Scholar
  57. 57.
    Ono, H.: Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975) 1082–1091.CrossRefGoogle Scholar
  58. 58.
    Benjamin, T.B.: Internal waves in fluids of great depth, J. Fluid Mech. 29 (1967) 559–592.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1994

Authors and Affiliations

  • D. F. Parker
    • 1
  1. 1.University of EdinburghEdinburghUK

Personalised recommendations