Advertisement

Inelastic Response of Thin Shells

Basic Problems and Applications
  • W. Olszak
  • A. Sawczuk
Part of the International Centre for Mechanical Sciences book series (CISM, volume 240)

Abstract

The applications of shells in modern technology makes the classical theory, based on physical linearity and time independence of the material properties, inadequate for rational design. The inelastic behaviour of shells attracts attention, various forms of the material constitutive equations being used, in order to explain such types of inelastic response as creep, relaxation, or/and plasticity.

Keywords

Cylindrical Shell Limit Analysis Thin Shell Limit Equilibrium Conical Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I.I. Goldenblatt: Some questions of mechanics of deformable media (in Russian), 1955.Google Scholar
  2. [2]
    A.M. Freudenthal and H. Geiringer: The Mathematical Theories of the Thelasic Continuum, Handbuch der Physik 6, 229–433, Berlin 1958.MathSciNetGoogle Scholar
  3. [3]
    R. Bland: The Theory of Linear Viscoelasticity, Oxford 1960.MATHGoogle Scholar
  4. [4]
    N.Kh. Arutyunyan: Some Questions of the Creep Theory, (in Russian), Moscow 1952.Google Scholar
  5. [5]
    Yu.N. Rabotnov: The equilibrium of elastic media with a heredity, (in Russian), Prikl. Mat. Mech. 12 (1948), 53–62.MathSciNetMATHGoogle Scholar
  6. [6]
    A.R. Rzhanitsyn: Some Questions of Mechanics of Time-Deformable Systems, (in Russian), Moscow (1949).Google Scholar
  7. [7]
    T. Alfrey: Mechanical Behaviour of High Polymers, New York 1948.Google Scholar
  8. [8]
    R.W. Bailey: Creep relationships and their applications to pipes, tubes and cylindrical parts under internal pressure, Proc. Instn. Mech. Engrs., 4 (1951), 164, 425–431.Google Scholar
  9. [9]
    I. Finnie: Stress analysis in the presence of creep, Appl. Mech. Rev. 13 (1960), 705–712.MathSciNetGoogle Scholar
  10. [10]
    L.M. Kachanov: Theory of Creep, (in Russian), Moscow 1960.Google Scholar
  11. [11]
    F.K.Q. Odqvist and J. Hult: Kriechfestigkeit metallischer Werkstoffe, Berlin 1962.Google Scholar
  12. [12]
    N.J. Hoff: Approximate analysis of structures in the presence of moderately large creep deformations, Quart. Appl. Math. 12 (1954), 49–55.MathSciNetMATHGoogle Scholar
  13. [13]
    N.J. Hoff: Theories of creep buckling, Proc. 3rd U.S. Nath. Congress Appl. Mech. (Providence 1958), ASME New York 1959, 29–49.Google Scholar
  14. [14]
    Yu. N. Rabotnov: The theory of creep and its applications, Proc. 2nd Symp. on Nav. Struc. Mech. (Providence 1960), Oxford, 338–346.Google Scholar
  15. [15]
    R. Hill: Mathematical Theory of Plasticity, London 1950.MATHGoogle Scholar
  16. [16]
    W. Prager and P.G. Hodge: Theory of Perfectly Plastic Solids, New York 1951.MATHGoogle Scholar
  17. [17]
    A.A. Ilyushin: Plasticity, (in Russian), Moscow 1948.Google Scholar
  18. [18]
    W.T. Koiter: General theorems for elastic-plastic solids, Progress in Solid Mechanics I, Amsterdam 1960, 167–224.Google Scholar
  19. [19]
    D.C. Drucker: Plasticity, Proc. 1st. Symp. Naval Struct. Mech. (Stanford 1958), Oxford 1959, 407–455.Google Scholar
  20. [20]
    W. Prager: Introduction to Plasticity, Reading, Mass. 1959.MATHGoogle Scholar
  21. [21]
    A.A. Gvozdev: Theory of Limit Equilibrium, (in Russian), Moscow 1949.Google Scholar
  22. [22]
    W. Prager: The general theory of limit design, Proc. 8th Int. Congr. Appl. Mech. (Istanbul 1952).Google Scholar
  23. [23]
    P.G. Hodge: Plastic Analysis of Structures, New York 1959.MATHGoogle Scholar
  24. [24]
    A. Sawczuk and Th. Jaeger: Grenztragfähigkeits-Theorie der Platten, Berlin 1963.MATHGoogle Scholar
  25. [25]
    W. Flügge: Stresses in Shells, Springer Verlag, Berlin 1960.MATHGoogle Scholar
  26. [26]
    I.I. Goldenblatt and N.A. Nikolaenko: Creep and Bearing Capacity of Shells, (in Russian), Moscow 1960.Google Scholar
  27. [27]
    W. Olszak and A. Sawczuk: Inelastic Behaviour in Shells, P. Noordhoff, Groningen 1967.MATHGoogle Scholar
  28. [28]
    P.M. Naghdi and W.C. Orthwein: Response of shallow viscoelastic spherical shells to time dependent axisymmetric loads, Quart. Appl. Math. 18 (1960/61), 107–121.MathSciNetMATHGoogle Scholar
  29. [29]
    E. Tungl: Durchschlagen einer flachen Kugelschale aus viscoelastischem Material, Österreichisches Ingenieur-Archiv 16 (1926), 280–289.Google Scholar
  30. [30]
    J.N. Distefano and M.H. Gradowczyk: Creep behaviour of homogeneous anisotropic prismatic shells, Proc. Symp. Non-Classical Shell Problems (Warsaw 1963), 1964.Google Scholar
  31. [31]
    K. Pister: Axisymmetric deformation of orthotropic visco-elastic cylindrical sheUs, Proc. Symp. Non-Classical Shell Problems (Warsaw 1963), Amsterdam 1964.Google Scholar
  32. [32]
    I.I. Goldenblatt and N.A. Nikolaenko: Theory of Creep of Structural Materials and its Applications, (in Russian), Moscow 1960.Google Scholar
  33. [33]
    M.I. Rozovski: Influence of time factor on strength of a spherical shell subjected to internal pressure, (in Russian), Izv. Akad. Nauk SSSR, OTN, Mekh. mash. (1961) 4, 124–129.Google Scholar
  34. [34]
    N. Kh. Arutyunyan and M.M. Manukyan: Creep of composite cylindrical tubes , (in Russian), Izv. Akad. Nauk Arm. SSR, Ser. fiz. mat. 10 (1957), 6, 41–58.MathSciNetGoogle Scholar
  35. [35]
    N. Kh. Arutyunyan and M.M. Manukyan: Creep of a spherical vessel, Dokl. Akad. Nauk. Arm. SSR 27 (1958), 209–218.MATHGoogle Scholar
  36. [36]
    M.I. Estrin: Calculation of shallow axisymmetrical shells made of elasto-viscous materials taking account of large deflections, (in Russian), Voprosy teorii plastitchnosti i protchnosti stroj. konstr. Trudy CNIISK, Moscow 1961, 4, 123–134.Google Scholar
  37. [37]
    H. Muguruma: Two-dimensional creep deformation of concrete, Proc. Symp. Non-Classical Shell, Problems (Warsaw 1963), Amsterdam 1964.Google Scholar
  38. [38]
    D.C. Houghton and A. Rothwell: Measured deflections of concrete folded plate and hyperbolic paraboloid shells, Proc. Symp. Non-Classical Shell Problems (Warsaw) 1963, Amsterdam 1964.Google Scholar
  39. [39]
    B.D. Aggarwala: Thermal stresses in spherical shells of viscoelastic materials, Z. Angew. Math. Mech. 40 (1960) 482–488.MathSciNetMATHGoogle Scholar
  40. [40]
    W. Nowacki: Thermal stresses in elastic and viscoelastic shells, Proc. Symp. Non-Classical Shell Problems (Warsaw) 1963, North Holland, Amsterdam 1964.Google Scholar
  41. [41]
    L.M. Kachanov: Creep of oval tubes with variable wall thickness, (in Russian), Izv. Akad. Nauk SSSR, OTN, 9 (1956), 65–71.Google Scholar
  42. [42]
    M.P. Bieniek and N.M. Freudenthal: Creep deformation and stresses in pressurized long cylindrical shells, J. Aero Space Sci. 27 (1960), 763–778.MATHGoogle Scholar
  43. [43]
    A.E. Gemma: The creep deformation of symmetrically loaded circular cylindrical shells, J. Aero/Space Sci. 27 (1960), 953–954.MATHGoogle Scholar
  44. [44]
    A.E. Gemma and J.T. Warfield: The creep deformation of symmetrically loaded shells, J. Aero/Space Sci. 28 (1961), 507–508.MATHGoogle Scholar
  45. [45]
    A.E. Gemma: The steady creep of long pressurized cylinders, Journ. Aero/Space Sci. 29 (1962), 352–353.Google Scholar
  46. [46]
    N.J. Hoff, W.E. Jahsman and W. Nachbar: A study of creep collapse of a long circular cylindrical shell under uniform external pressure, J. Aero/Space Sci. 26 (1959), 663–669.MathSciNetMATHGoogle Scholar
  47. [47]
    E.K.G. Odqvist: Applicability of the elastic analogy to creep problems of plates, membranes and beams, Creep in Structures, Berlin 1962, 137–160.Google Scholar
  48. [48]
    H. Poritsky: Effect of creep on stresses in cylindrical shells, Creep in Structures, Berlin 1962, 229–244.Google Scholar
  49. [49]
    C.R. Calladine: The steady creep of shells: a method of analysis, Nuclear Reactor Containment Buildings and Pressure Vessels, Proc. Symp. Glasgow 1960, London 1960, 411–431.Google Scholar
  50. [50]
    C.R. Calladine: On the creep of a wrinkle, Creep in Structures, Berlin 1962, 245–271.Google Scholar
  51. [51]
    C.R. Calladine: Upper and lower bound solutions for edge response of shells on steady creep, Proc. Symp. Non-Classica; Shell Problems (Warsaw 1963), Amsterdam 1964.Google Scholar
  52. [52]
    V.I. Rozenblum: On the approximate creep equations, (in Russian), Izv. Akad. Nauk SSSR, Mekh. Mash. (1959) 5, 157–160.Google Scholar
  53. [53]
    E.T. Onat and H. Yuksel: On the steady creep of shells, Proc. 3rd U.S. Natl. Congr. Appl. Mech. (Providence 1958), ASME, New York 1959, 625–630.Google Scholar
  54. [54]
    Fr. B. de Veubeke: Creep Buckling. High Temperature Effects in Aircraft Structures, AGARDograph 28, New York 1958.Google Scholar
  55. [55]
    S.A. Shesterikov: Creep buckling, (in Russian), Prikl. Mat. Mekh., 25 (1961), 754–755.Google Scholar
  56. [56]
    A.P. Kuznetsov and L.M. Kurshin: Stability of circular cylindrical shells subjected to creep, (in Russian), Prikl. Mekh. Tech. Fiz. (1962), 3, 66–72.Google Scholar
  57. [57]
    G. Gerard: Theory of creep buckling of perfect plates and shells, J. Aero/Space Sci. 29 (1962), 1087–1090.MathSciNetMATHGoogle Scholar
  58. [58]
    Z. Bychawski: Creep buckling of a cylindrical panel, Proc. World Conference on Shells, San Francisco 1962,Google Scholar
  59. [59]
    V.I. Rozenblum: On a non-stationary creep of membrane shells, (in Russian), Prikl, Mekh. Techn. Fiz. (1960) 4, 82–84.Google Scholar
  60. [60]
    F.A. Cozzarelli and S.A. Patel: Creep deformations in membrane shells, J. Frankl. Inst. 278 (1964), 45–61.MathSciNetGoogle Scholar
  61. [61]
    E.A. Davis: Creep rupture tests for design of high-pressure steam equipment, J. Basic Engng. 2 (1960), 453–461.Google Scholar
  62. [62]
    Tein Wah and R. Kirk: Creep collapse of long cylindrical shells under high temperature and external pressure, J. Aero/Space Sci. 28 (1961), 177–188, 208MATHGoogle Scholar
  63. [63]
    O.V. Sosin: Stationary anisotropic creep of discs, (in Russian), Prik. Mekh. Tekh. Fiz. (1963) 4, 128–131.Google Scholar
  64. [64]
    A.A. Ilyushin: Finite relationship between forces and moments and their relation in the theory of shells, (in Russian), Prikl. Mat. Mekh. 9 (1945), 101–140.MathSciNetMATHGoogle Scholar
  65. [65]
    A.A. Llyushin: an approximate theory of elastic-plastic deformations of an axisymmetrical shell, (in Russian), Prikl. Mat. Mekh. 8 (1944), 15–24.Google Scholar
  66. [66]
    I.S. Tsurkov: Elastic-plastic equilibrium of rotationally symmetric shells subjected to small axially symmetric deformations, (in Russian), Izv. Akad. Nauk SSSR, OTN (1956) 11, 106–110.Google Scholar
  67. [67]
    I.S. Tsurkov: Elastic-plastic equilibrium of shallow shells at small deformations, (in Russian), Izv. Akad. Nauk SSR, OTN (1957) 6, 139–142.Google Scholar
  68. [68]
    I.S. Tsurkov: Elastic-plastic deformations at the clamped edge of a thin-walled cylinder, (in Russian), Inzh. sbornik (1961) 31, 93–100.Google Scholar
  69. [69]
    R.A. Mezhlumyan: Bending and torsion of thin-walled shells beyond the elastic limit, (in Russian), Prikl. Mat. Mekh. 14 (1950), 253–264.Google Scholar
  70. [70]
    R.A. Mezhlumyan: Boundary conditions of bending and torsion of thin-walled shells beyond the elastic limit, (in Russian), Prikl. Mat. Mekh. 14 (1950), 537–542.Google Scholar
  71. [71]
    R.A. Mezhlumyan: Determination of ultimate load of a thin-walled structure taking account of the strainhardening material, (in Russian), Prikl. Mat. Mekh. 15 (1954), 174–182.Google Scholar
  72. [72]
    R.A. Mezhlumyan: Approximate theory of elastic-plastic shells and its application to the analysis of structures, (in Russian), Inzh. sbornik 10 (1952), 35–70.Google Scholar
  73. [73]
    V.M. Panferov: On the applicability of variational methods to problems of the theory of small elastic-plastic deformations, (in Russian), Prikl. Mat. Mekh. 16 (1952), 319–322.MathSciNetMATHGoogle Scholar
  74. [74]
    A.N. Ananina: An axisymmetrical deformation of a cylindrical shell subjected to elastic-plastic deformations, (in Russian), Inzh. Sbornik. 18 (1954), 157–160.MathSciNetGoogle Scholar
  75. [75]
    P.G. Hodge:. Displacements in an elastic cylindrical shell, J. Appl. Mech. 23 (1956), 73–79.MATHGoogle Scholar
  76. [76]
    V.S. Chernina: Elastic-plastic deformation of a welded non-homogeneous shell, (in Russian), Izv. Akad. Nauk SSSR, OTN, Mekh.i Mash. (1960) 1, 133–140.Google Scholar
  77. [77]
    P. Klement: Theorie der elastisch-plastischen Zylinderschale, Österr. Ingenieur-Archiv, 16 (1962) 199–211.MathSciNetMATHGoogle Scholar
  78. [78]
    A.A. Gvozdev: The determination of the value of the collapse — load for statically indeterminate systems undergoing plastic deformation, Inter. J. Mech. Sci. 1 (1960) 322–335 (Russian edition 1936).MathSciNetGoogle Scholar
  79. [79]
    S.M. Feinberg: Principle of the limiting stress, (in Russian), Prikl. Mat. Mekh., 12 (1948), Izv. Akad. Nauk SSSR, OTN, Mekh. Mash. (1960) 4, 101–111.Google Scholar
  80. [80]
    D.C. Drucker, H.I. Greenberg and W. Prager: The safety factor of an elastic-plastic body in plane strain, J. Appl. Mech., 18 (1951), 371–378.MathSciNetMATHGoogle Scholar
  81. [81]
    R. Hill: A note on estimating the yield point loads in a plastic-rigid body, Phil. Mag. 43 (7) (1952), 353–355.MATHGoogle Scholar
  82. [82]
    D.C. Drucker, W. Prager and H.I. Greenberg: Extended limit design theorems for continuous media, Quart. Appl. Math., 9 (1952) 381–389.MathSciNetMATHGoogle Scholar
  83. [83]
    A. Sawczuk and J. Rychlewski:On yield surfaces for plastic shells, Arch. Mech. Stos., 12 (1960) 29–53.MathSciNetGoogle Scholar
  84. [84]
    M. Save: On yield conditions in generalized stresses, Quart. Appl. Math., 19 (1961) 259–267.MathSciNetMATHGoogle Scholar
  85. [85]
    V.V. Rozhdestvenski: Limit equilibrium of junctions of rotational sheUs, (in Russian), Nauchn. soobshcs. Akad. Stroi. i Arch., No. 1. Moscow 1957.Google Scholar
  86. [86]
    M.I. Yerchov: Finite relationship between forces and moments of plastic deformations of shells, (in Russian), Stroit. Mekh. rasch, sooruzh, (1959), 3, 38–41.Google Scholar
  87. [87]
    P.G. Hodge: The .Mises yield condition for rotationally symmetric shells, Quart. Appl. Math., 18 (1961), 305–311.MathSciNetMATHGoogle Scholar
  88. [88]
    G.S. Shapiro: On yield surfaces for ideally plastic shells, Problems of Continuum Mechanics, Soc. Ind. Appl. Math. Philadelphia, 1961, 414–418.Google Scholar
  89. [89]
    D.C. Drucker: Limit analysis of cylindrical shells under axially-symmetric loading, Proc. 1st Midwest Conf. Solid Mech. Urbana, 1953, 158–163.Google Scholar
  90. [90]
    E.T. Onat and W. Prager: Limit analysis of shells of revolution, Proc. Ned. Akad. Wetensch. Ser. B. 57 (1954),534–548.MathSciNetMATHGoogle Scholar
  91. [91]
    P.G. Hodge: Rigid-plastic analysis of symmetrically loaded cylindrical shells, J. Appl. Mech., 21. (1954), 336–342.MathSciNetMATHGoogle Scholar
  92. [92]
    E.T. Onat: The plastic collapse of cylindrical shells under axially symmetrically loading, Quart. Appl. Math., 13 (1955), 68–72.MathSciNetGoogle Scholar
  93. [93]
    W. Olszak and A. Sawczuk: Die GrenztragfShigkeit von zylindrischen Schalen bei verschiedenen Formen der Plastizitatsbedingung. Acta Techn. Hung. 26 (1959), 55–77.MathSciNetGoogle Scholar
  94. [94]
    P.G. Hodge: Yield conditions for rotationally symmetric shells under axisymmetric loading, J. Appl. Mech. 27 (1960), 323–331.MathSciNetGoogle Scholar
  95. [95]
    P.G. Hodge: A comparison of yield conditions in the theory of plastic shells, Problems in Continuum Mechanics, Soc. for Ind. and Appl. Mathem. Philadelphia, Pa, 1961, 165–177.Google Scholar
  96. [96]
    P.G. Hodge and J. Panarelli: Interaction curves for circular cylindrical shells according to the Mises or Tresca yield criterion, J. Appl. Mech. 29 (1962), 375–380.MATHGoogle Scholar
  97. [97]
    P.G. Hodge: Limit analysis of rotationally symmetric plates and shells, Prentice-Hall, Englewood Cliffs N.J. 1963.MATHGoogle Scholar
  98. [98]
    Yu. N. Rabotnov: An approximate engineering theory of elastoplastic shells, (in Russian), Prikl. Mat. Mekh. 15 (1951), 167–174.MathSciNetMATHGoogle Scholar
  99. [99]
    P.G. Hodge: The linearization of plasticity problems by means of non-homogeneous materials, Proc. Symp. Nonhomog. Probl.,Warsaw 1958, Pergamon Press, London 1959, 147–156.Google Scholar
  100. [100]
    V.I. Rozenblum: An approximate theory of equilibrium of plastic shells, (in Russian), Prikl. Mat. Mekh. 18 (1954), 289–302.Google Scholar
  101. [101]
    D.C. Drucker and R.T. Shield: Limit analysis of symmetrically loaded thin shells of revolution, J. Appl. Mech., 26, 1959, 61–68.MathSciNetMATHGoogle Scholar
  102. [102]
    V.I. Rozenblum: On the yield conditions of thin shells, (in Russian), Prikl, Mat. Mekh. 1960, 364–366.Google Scholar
  103. [103]
    W. Prager: On the plastic analysis of sandwich structures. Problems of Continuum Mechanics, Soc. Ind. Appl. Math. Philadelphia, 1961, 342–349.Google Scholar
  104. [104]
    T. Nakamura: Plastic analysis of shells of revolution under axi-symmetric loads, Ph.D. Dissertation, Stanford Univ., 1961.Google Scholar
  105. [105]
    P.G. Hodge: Piece-wise linear bounds on the yield-point load of shells, J. Mech. Phys. Solids, 11 (1963), 1–12.MATHGoogle Scholar
  106. [106]
    Yu. P. Listrova: On the bearing capacity of cylindrical shells under the condition of plasticity of the maximum reduced stress, (in Russian), Izv. Akad. Nauk SSSR, Mekh. Mash. (1963) 2, 173–176.Google Scholar
  107. [107]
    A. Sawczuk and W. Olszak: A method of limit analysis of reinforced concrete tanks, Proc. Int. Coll. Simpl. Shell Calc. methods, (Brussels 1961), Amsterdam, 1962, 416–137Google Scholar
  108. [108]
    A. Sawczuk and J.A. König: Limit analysis of reinforced concrete cylindrical silos, (in Polish), Arch. Inz. Ladow., 8 (1962), 161–183.Google Scholar
  109. [109]
    M.P. Nielsen: Yield conditions in the membrane state of reinforced concrete shells, Proc. Symp. Non-Classical Shell Problems, (Warsaw 1963), Amsterdam 1964.Google Scholar
  110. [110]
    R. Sankaranarayanan and W. Olszak: The load carrying capacities of plates and shells, Proc. Symp. Non-Classical Shell Problems (Warsaw 1963), Amsterdam 1964.Google Scholar
  111. [111]
    E.T. Onat: Plastic shells, Proc. Symp. Non-Classical Shell Problems, (Warsaw 1963), Amsterdam 1964.Google Scholar
  112. [112]
    S.M. Feinberg: Plastic flow of a shallow shell for an axisymmetrical problem, (in Russian), Prikl. Math. Mekh. 21 1957), 544–549.MathSciNetGoogle Scholar
  113. [113]
    P.G. Hodge. The collapse load of a spherical cap, Proc. 4th Midwest Conf. Solid Mech.,Austin Texas (1959;. 1, 108–126.Google Scholar
  114. [114]
    Z. Mroz and Xu-Bing-ye: The load carrying capacities of symmetrically loaded spherical shells, Arch. Mech. Stos. 15 (1963), 245–266.MathSciNetMATHGoogle Scholar
  115. [115]
    V.V. Rozhdestvenski: Bearing Capacity of Cylindrical Vessels with Conical and Spherical Heads, (in Russian), Moscow 1959.Google Scholar
  116. [116]
    P.G. Hodge: Plastic analysis of circular conical shells, J. Appl. Mech., 27 (1960), 696–700.MathSciNetMATHGoogle Scholar
  117. [117]
    E.T. Onat: Plastic analysis of shallow conical shells, J. Engng. Mech. Div. Proc. Amer. Soc. Civ. Engrs. 86 (1960), 6, 1–12.Google Scholar
  118. [118]
    P.G. Hodge and C. Lakshmikantham: Yield point loads of spherical caps with cut-outs, Proc. 4th U.S. Nat. Congr. Appl. Mech., (Berkeley, 1962) ASME, 1963, 951–954.Google Scholar
  119. [119]
    P.G. Hodge and J. de Runtz: The carrying capacity of conical shells under concentrated and distributed loads, Proc. Symp. Non-Classical Shell Problems (Warsaw 1963), Amsterdam 1964.Google Scholar
  120. [120]
    G. Eason and R.T. Shield: The influence of free ends on the load carrying capacity of cylindrical shells, Journ. Mech. Phys. of Solids. 4 (1955), 17–27.MathSciNetMATHGoogle Scholar
  121. [121]
    P.G. Hodge: Piecewise linear isotropic plasticity applied to a circular cylindrical shell with symmetrical radial loading, J. Franklin Inst. 263 (1957), 13–33.MathSciNetGoogle Scholar
  122. [122]
    A.P. Rzhanitsyn: Plastic deformations of a tube under an axisymmetrical load, (in Russian), Izv. Nauk, SSSR, OTN (1958), 8, 60–65.Google Scholar
  123. [123]
    R.T. Shield and D.C. Drucker: Limit strength of thin-walled pressure vessels with an ASME standard torispherical head, Proc. 3rd U.S. Nat. Congr. Appl. Mech. (Providence, 1958), ASME, New York 1959, 665–672.Google Scholar
  124. [124]
    B. Paul and P.G. Hodge: Carrying capacity of elastic plastic shells under hydrostatic pressure, Proc. 3rd U.S. Nat. Congr. Appl. Mech. (Providence 1958) ASME, New York, 1959, 631–640.Google Scholar
  125. [125]
    B. Paul: Carrying capacity of elastic-plastic shells with various end conditions under hydrostatic pressure, J. Appl. Mech. 26 (1959), 553–560.MathSciNetGoogle Scholar
  126. [126]
    G. Eason: The load carrying capacity of cylindrical shells subjected to a ring of force, J. Mech. Phys. Solids, (1959), 169–181.Google Scholar
  127. [127]
    A. Sawczuk and P.G. Hodge: Comparison of yield conditions for circular cylindrical shells, J. Franklin Inst., 269 (1960), 362–374.Google Scholar
  128. [128]
    M.I. Yerchov: Determination of bearing capacity of a multi-span thin-walled pipeline, (in Russian), Vopr. teorii plastichnosti i prochnosti stroit. konstr. Trudy CNIISK, No. 4, Moscow 1961, 169–175.Google Scholar
  129. [129]
    J. Paranelli and P.G. Hodge: Plastic analysis of cylindrical shells under pressure, axial load and torque, Proc. 8th Midw. Mech. Conf. (Cleveland 1963).Google Scholar
  130. [130]
    Yu. P. Listrova and M.A. Rudis: Limit equilibrium of a toroidal shell, (in Russian), Mekh. i Mashinostroenie (1963), 3, 119–123.Google Scholar
  131. [131]
    M.N. Fialkov: Limit analysis of simply supported circular shell roofs, J. Engng. Mech. Div. Proc. ASCE 84, 1958, Sept. 5706.Google Scholar
  132. [132]
    C.A. Szmodits: A hyperbolic paraboloidal shell, (in Hungarian) Epitesi es Kozlekedestudomanyi Kozlemenyek 3 (1959), 1–2.Google Scholar
  133. [133]
    A. Sawczuk: On experimental foundations of the limit analysis of reinforced concrete shells, Shell Research, North Holland, Amsterdam, 1961, 217–231.Google Scholar
  134. [134]
    M. Janas: Limit analysis of a cylindrical shell, (in Polish), Arch. Inz. Ladow., 8 (1962), 365–374.Google Scholar
  135. [135]
    M. Janas: Limit analysis of non-symmetric plastic shells by a generalized yield-line method, Proc. Symp. Non-Classical Shell Problems, (Warsaw 1963), Amsterdam 1964.Google Scholar
  136. [136]
    T. Nakamura: Limit analysis of non-symmetric sandwich shells, Proc. Symp. Non-Classical Shell Problems, (Warsaw 1963), Amsterdam 1964.Google Scholar
  137. [137]
    J. Rychlewski: Limit analysis of holicoidal shells, Proc Symp. Non-Classical Shell Problems, (Warsaw 1963), Amsterdam 1964.Google Scholar
  138. [138]
    N.V. Akhvledyani and V.N. Shaishmelashvili: On the limit analysis of shells, (in Russian), Soobsch. Akad. Nauk Gruz SSSR, 13 (1952).Google Scholar
  139. [139]
    N.V. Akhvledyani and Shaishmelashvili: On the limit analysis of double-curvature shells, (in Russian), Trudy Inst. Stroit. Dela, Akad. Nauk Gruz SSR, Tbilisi 5, (1955), 61–71.Google Scholar
  140. [140]
    G.I. Khazalya: Limit state analysis of shallow spherical shells, (in Russian), Soobch. Akad. Nauk Gruz SSR, 17 (1956), 815–822.Google Scholar
  141. [141]
    J. Menyhard: Die statische Berechnung von zylindrischen Stahlbeton-Behältern auf Grund der Bruchteorie. V.rbericht des V. Kongr. Internat. Vereinigung f. Bruckenbau u. Hochbau, Lisboa 1956,451–458.Google Scholar
  142. [142]
    A.R. Rzhanitsyn: The design of plates and shells by the kinematical method of limit equilibrium, IX Cong. Appl. Mech. Brussels 1956, Actes, 6, 331–340.Google Scholar
  143. [143]
    N.V. Akhvledyani: To the limit analysis of reinforced concrete rotational shells, Sobshch. Akad. Nauk. Gruz. SSR. 18 (1957), 209–210.Google Scholar
  144. [144]
    A.P. Rzhanitsyn: Analysis of reinforced concrete shells using the method of limit equilibrium, (in Russian), Teoria rasch.i konstr. zhelezobet. konstr. Moscow, 1958, 155–175.Google Scholar
  145. [145]
    A.R. Rzhanitsyn: Analysis of shells using the method of limit equnibrium, (in Russian), Issl. po vopr. teorii plast. i prochn. stroj. konstr. Moscow 1958, 7–35.Google Scholar
  146. [146]
    A.M. Ovechkin: Equilibrium equations of reinforced concrete domes in the state of limit equilibrium, Nauchn. dokl. vyssh. shkoly stroit., (1958), 1, 35–46.Google Scholar
  147. [147]
    A.R. Rzhanitsyn: Analysis of shallow shells using the method of limit equilibrium, Stroi. Mekh. Rasch. Sooruzh. (1959), 1, 5–11.Google Scholar
  148. [148]
    A.R. Rzhanitsyn: Shallow and corrugated shells, (in Russian), Nauchn. Soobsch. Akad. Stroi.i Arkh SSSR, No. 14, Moscow 1960.Google Scholar
  149. [149]
    A.M. Ovechkin: Calculation of reinforced concrete axisymmetric structural shells, Moscow 1961.Google Scholar
  150. [150]
    S. Kaliszky: Unterschung einer Kegelstumpfschale aus Stahlbeton auf Grund des Traglastverfahrens, Acta Tech. Hung., 34, 1961, 159–175.Google Scholar
  151. [151]
    N.V. Akhvledyani: To the analysis of bearing capacity of precast reinforced concrete domes, (in Russian), Stroi. Mekh. Rasch. Sooruzh. 3 (1961), 5, 15–17.Google Scholar
  152. [152]
    N.V. Akhvledyani: On the ultimate load of shallow reinforced concrete shells of double curvature, (in Russian), Issled. Teorii Sooruzh. 11 (1962), 253–259.Google Scholar
  153. [153]
    G.K. Haydukov: Limit equilibrium design of shallow shell panels, Proc. Sump. Non-Classical Shell Problems (Warsaw 1963), Amsterdam 1964.Google Scholar
  154. [154]
    S. Kaliszky: Limit analysis of reinforced concrete truncated-cone shell, Proc. Symp. Non-Classical Shell Problems (Warsaw 1963), Amsterdam 1964.Google Scholar
  155. [155]
    K.W. Johansen: Critical notes on calculation and design of cylindrical shells, Final Rep. 3rd Congr. IABSE, Liège 1948, 601–606.Google Scholar
  156. [156]
    G. de Kazinczy: The limit design of shells, Final Rep. 3rd Congr. IABSE, Liège 1948.Google Scholar
  157. [157]
    A.L.L. Baker: A plastic design theory for reinforced and prestressed concrete shell roofs, Mag. Concrete Research, 4, 1950, 27–34.Google Scholar
  158. [158]
    A.L.L. Baker: Ultimate strength theory for short reinforced-concrete cylindrical shell roofs. Mag. Congr. Research, 10, 1952, 3–8.Google Scholar
  159. [159]
    P.B. Morice: Research on concrete shell structures, Proc. 1st Symp. Shell Roof Constr. London 1952, Cem. Concr. Assoc. London 1954, 99–113.Google Scholar
  160. [160]
    A.C. van Riel, W.J. Beranek and A.L. Bouma: Tests on shell roof models of reinforced concrete mortar, Proc. 2nd Symp. Shell Roof Constr. Oslo 1957, Teknisk Ukeblad, 1958, 315–324.Google Scholar
  161. [161]
    A. Enami: Some experiments and the mechanism conditions of reinforced concrete prismatic folded plate structures, Proc. Symp. Non-Classical Shell Problems (Warsaw 1963), Amsterdam 1964.Google Scholar
  162. [162]
    B.I. Bachrach, R.H. Lance: Plastic analysis of fiber reinforced shells of revolution, J. Appl. Mech.,41, 1974,974–978.Google Scholar
  163. [163]
    A. Biron: Limit analysis of cylindrical shells with longitudinal rib reinforcement, Int. J. Solids Structures, 6, 1970, 893–908.Google Scholar
  164. [164]
    A. Biron, A. Sawczuk: Plastic analysis of rib-reinforced cylindrical shells, J. Appl. Mech., 34, 1967,37–42.Google Scholar
  165. [165]
    C. R. Calladine: On the derivation of yield conditions for shells, J. Appl. Mech., 39, 1972, 852–853.Google Scholar
  166. [166]
    M.I. Erkhov: Problems of strength of ideally plastic shells, (in Russian), in: Stroit. Konstr., 4 CNIISK, Moscow 1969, 74–164.Google Scholar
  167. [167]
    G.V. Ivanov: Approximation of the interaction between the membrane forces and moments at the Mises yield condition, (in Russian), Mekh. Tverd. Tela, 1968, No. 6, 74–75.Google Scholar
  168. [168]
    G.V. Ivanov: Elastic-plastic yielding of shells at the Mises criterion, (in Russian), Mekh. Tverd. Tela, No. 3, 1969, 85–90.Google Scholar
  169. [169]
    D.D. Ivlev: On the theory of limit analysis of shells at piecewise linear yield criteria, (in Russian), Mekh. Mashinostr., 1962, No. 6, 95–102.Google Scholar
  170. [170]
    D.D. Ivlev, Yu. P. Listrova, Yu. V. Nemirovsky: On the theory of limit analysis of layered plates and shells, (in Russian), Mekh. Mash., No. 4, 1964, 77–86.Google Scholar
  171. [171]
    L.N. Kachanov: Problems of elastic-plastic theory of plates and shells, (in Russian), Proc. 6th All-Union Conf. Shells and Plates (Baku 1966), Nauka, Moscow 1966, 954–959.Google Scholar
  172. [172]
    P.V. McLaughlin, Jr.: Plastic behavior of two layer sandwich structures, J. Appl. Mech., 40, 1972, 257–262.Google Scholar
  173. [173]
    M. Sh. Mikeladze: Introduction to Technical Theory of Ideally Plastic Thin Shells, (in Russian), Metsnereba, Tbilisi 1969.Google Scholar
  174. [174]
    M.S. Mikhailishin, Yu. V. Nemirovsky, O.N. Shablii: On the limit analysis of bimetalic shells of revolution, (in Russian), Zh. Prikl. Mekh. Tekh. Fiz. 1974, No. 2, 139–151.Google Scholar
  175. [175]
    Z. Mróz, Xu Bin-ye: The load carrying capacities of symmetrically loaded spherical shells, Arch. Mech. Stos., 15, 1963, 245–266.MathSciNetMATHGoogle Scholar
  176. [176]
    Yu. V. Nemirovsky: Limit equilibrium of cylindrical waffer shells, (in Russian), Mekh. Tverd. Tela, 1967, No. 3, 52–59.Google Scholar
  177. [177]
    Yu. V. Nemirovsky: Limit analysis of stiffened axisymmetric shells, Int. J. Solids Structures, 5, 1969, 1037–1058.MATHGoogle Scholar
  178. [178]
    M. Robinson: A comparison of yield surfaces for thin shells, Int. J. Mech. Sci., 15, 1971, 345–354.Google Scholar
  179. [179]
    M. Robinson: The effect of transverse shear stresses on the yield surface for thin shells, Int. J. Solids Structures, 9, 1973, 810–818.Google Scholar
  180. [180]
    R. Sankaranarayanan: Yield loci for nonhomogeneous shells of revolution, (in Polish), Rozpr. Inz. 14, 1966, 231–240.Google Scholar
  181. [181]
    A. Sawczuk: Yield surfaces, Tech. Note 1, University of Waterloo, Waterloo 1971.Google Scholar
  182. [182]
    A. Biron, P.G. Hodge Jr.: Limit analysis of rotationally symmetric shells under central boss loadings by a numerical method, J. Appl. Mech., 34, 1967, 644–650.Google Scholar
  183. [183]
    A.A. Gvozdev, A.M. Protsenko: Prospects of application of the theory of limit analysis of shells, (in Russian), Proc. 7th All-Union Conf. Shells and Plates (Dniepropetrovsk 1969), Nauka, Moscow 1970, 736–748.Google Scholar
  184. [184]
    M. Hamada, H. Nakanishi: A numerical method for the limit analysis of general shells of revolution, Bull. JSME, 14, 1971.Google Scholar
  185. [185]
    P.F. Kiprichouk, O.H. Shablii: Evaluation of the collapse load of shallow rotationally symmetric shells, Prikl. Mekh. 6, 1970, No. 1, 34–42.Google Scholar
  186. [186]
    Yu. P. Listrova, V.H. Potarov, M.A. Rudis: Limit equilibrium of shells of revolution made of sign sensitive materials, (in Russian), Mekh. Tverd. Tela, 1969, No. l, 141–145.Google Scholar
  187. [187]
    M.I. Reitman: Analysis of the equations of the theory of perfectly plastic shells, Arch. Mech. Stos., 19, 1967, 595–601.Google Scholar
  188. [188]
    V.I. Rozenblyum: On the complete system of equations for plastic equilibrium of thin shells, (in Russian), Mekh. Tverd. Tela, 1966, No. 3, 127–132.Google Scholar
  189. [189]
    J. Rychlewski: On the general theory of ideally plastic shells, (in Russian), in: Proc. 6th All-Union Conf. Shells Plates, (Baku 1966), Nauka, Moscow 1966, 873–880.Google Scholar
  190. [190]
    J. Rychlewski, G.S. Shapiro: Ideal-plastic plates and shells, (in Russian), in: Proc. 6th All-Umon Cont. Shells Plates, (Baku 1966), Nauka, Moscow 1966, 987–995.Google Scholar
  191. [191]
    A. Sawczuk: On plastic analysis of shells, Proc. IUTAM, Thin Shells (Thibisi 1978), North-Holland, Amsterdam 1979.Google Scholar
  192. [192]
    M. Sayir: Kollapsbelastung von rotations-symmetrischen Schalen, ZAMP, 17, 1966, 353–360.Google Scholar
  193. [193]
    M. Sayir: Die rotations-symmetrische dünne Zylinderschale aus ideal-plastischem Material, ZAMP, 19, 1968, 185–219, 447–472.MATHGoogle Scholar
  194. [194]
    J. Schroeder, A.N. Sherbourne: A general theorem for thin shells in classical plasticity, J. Math. Phys., 47, 1968, 85–108.Google Scholar
  195. [195]
    J. Schroeder, A.N. Sherbourne: Bounds for unsymmetrical yield point loads of thin shells, J. Math. Phys., 47, 1968, 249–26LMATHGoogle Scholar
  196. [196]
    J.G. Gerdeen, D.N. Hutula: Plastic collapse of ASME ellipsoidal head pressure vessels, J. Eng. Industry, 1970, 797–804.Google Scholar
  197. [197]
    B. Górecki: Load carrying capacity of elliptic shells, (in Polish), Bull. WAT, 22, 1973, 31–43.Google Scholar
  198. [198]
    H.M. Haydl, A.N. Sherbourne: Plastic analysis of shallow spherical shells, J. Appl. Mech., 40, 1974, 593–598.Google Scholar
  199. [199]
    H.S. Ho, Limit pressures of rigidly clamped circular cylindrical shells, J. Eng. Mech. Div., EM 4, 100, 1974, 757–772.Google Scholar
  200. [200]
    R.H. Lance, Chen-Hsiung Lee: The yield point load of conical shell, Int. J. Mech. Sci., 11, 1969, 129–143.MATHGoogle Scholar
  201. [201]
    J. A. Lellep: Limit equilibrium of shallow shells of sign sensive materials, (in Russian), Prikl. Mekh.,8, 1972, No. 2, 47–58.Google Scholar
  202. [202]
    H.F. Muensterer, F.P.J. Rimrott: Elastic-plastic response of a sandwich cylinder subjected to internal pressure, J. Strain Anal., 6, 1971, 273–278.Google Scholar
  203. [203]
    Nagarasan, E.P. Popov: Plastic and visco-plastic analysis of axisymmetric shells, Int. J. Solids Structures, 11, 1975, 1–19.Google Scholar
  204. [204]
    H. Nakanishi, M. Suzuki, M. Hamada: A lower bound limit analysis of shells of revolution, J. Appl. Mech., 42, 1975, 494–495.Google Scholar
  205. [205]
    N. Perrone: An experimental verification of limit analysis of short cylindrical shells, J. Appl. Mech., 36, 1964, 362–364.Google Scholar
  206. [206]
    M. Save, Ch. Massonnet: Plastic analysis and design of plates, shells and disks, North-Holland, Amsterdam 1972.MATHGoogle Scholar
  207. [207]
    J. Schroeder, A.N. Sherbourne: Unsymmetrical yield point loads of spherical domes, J. Eng. Mech. Div. Proc. ASCE EM 3, 1968, 823–839.Google Scholar
  208. [208]
    O.N. Shablii, M.S. Mikhalishin: Limit equilibrium of cylindrical rigid-plastic shells of sign sensitive materials, (in Russian), Probl. Protchnosti, 1973, No. 8, 23–29.Google Scholar
  209. [209]
    A.N. Sherbourne, H.M. Haydl: Limit loads of edge restrained shallow shells, Int. J. Solids Structures, 10, 1974, 873–881.MATHGoogle Scholar
  210. [210]
    V.E. Terrovere: Load carrying capacity and weight optimization of ellipsoidal shells, (in Russian), Prikl. Mekh., 8, 1972, No. 2, 68–72.Google Scholar
  211. [211]
    D.C Drucker and R.T. Shield: Design for minimum weight, Proc. 9th Int. Congr. Appl. Mech., Brussels 1956, Actes, 5, 212–222.Google Scholar
  212. [212]
    D.C. Drucker and R.T. Shield: Bounds on minimum weight, Quart. Appl. Math., 15, 1957, 269–281.MathSciNetMATHGoogle Scholar
  213. [213]
    R.T. Shield: Optimum design methods for structures, Proc. 2nd Symp. Naval Struc. Mech. (Providence 1960), Oxford 1960, 580–591.Google Scholar
  214. [214]
    Z. Mroz: On a problem of minimum weight design, Quart. Appl. Math. 19, 1961, 127–135.MathSciNetMATHGoogle Scholar
  215. [215]
    E.T. Onat and W. Prager: Limits of economy of materials in shells, De Ingenieur, 67, 1955, 10, 46–49.Google Scholar
  216. [216]
    W. Freiberger: Minimum weight design of cylindrical shells, J. Appl. Mech., 23, 1956, 576–580.MathSciNetMATHGoogle Scholar
  217. [217]
    W. Freiberger: On the minimum weight design problem for cylindrical sandwich shells, J. Aero. Sci. 24, 1957, 847–848.MathSciNetMATHGoogle Scholar
  218. [218]
    R.T. Shield: On the optimum design of shells, J. Appl. Mech., 27, 1960, 316–322.MathSciNetMATHGoogle Scholar
  219. [219]
    M. Sh. Mikeladze: Analysis of weight and strength of rigid plastic shells, (in Russian), Arch. Mech. Stos. 11 (1959), 17–31.MathSciNetGoogle Scholar
  220. [220]
    N. Sh. Mikeladze: On uniform-strength plastic shells, (in Russian), Soobshch. Akad. Gruz SSR, 25 (1960), 391–398.MATHGoogle Scholar
  221. [221]
    Z. Mroz: Optimal design of reinforced concrete shells, Proc. Symp. Non-Classical Shell Problems, (Warsaw 1963), Amsterdam 1964.Google Scholar
  222. [222]
    W. Olszak and A. Sawczuk: Some problems of limit analysis and limit design of non-homogeneous axially symmetric shells, Proc. Symp. Concr. Shell Roof Constr. Oslo 1956, Teknisk Ukeblad, 1957, 249–256.Google Scholar
  223. [223]
    H. Ziegler: Kuppeln gleicher Festigkeit, Ing. Archiv, 26, 1958, 378–382.MATHGoogle Scholar
  224. [224]
    W. Isler: Eine Kuppel gleicher Festigkeit ZAMP, 10, 1959, 576–578.Google Scholar
  225. [225]
    E. Melan: Theorie statisch unbestimmter Systeme aus ideal-plastischem Baustoff. Sitz.-Ber. Österr. Akad. Wiss. (2a), 145, 1936, p. 195–218.MATHGoogle Scholar
  226. [226]
    E. Melan: Zur Plastizität des räumlichen Kontinuums, Ing.-Arch., 9, 1938, p. 116–126.MATHGoogle Scholar
  227. [227]
    W.T. Koiter: A new general theorem of shake-down of elastic-plastic structures, Proc. Koninkl. Nederl. Akad. Wet. (B), 59, 1956, p. 24–34.MathSciNetMATHGoogle Scholar
  228. [228]
    W. Prager, Bauschinger adaptation of rigid-workhardening trusses, Mech. Res. Com. 1, 1974, p. 253–256.Google Scholar
  229. [229]
    B. Halphen: Accommodation and adaptation, 1979, (in press).Google Scholar
  230. [230]
    W.T. Koiter: Over de stabiliteit van het elastisch evenwicht, Thesis Delft (Amsterdam, 1945); two translations into English (Washington, 1967; Palo Alto, Cal. 1970).Google Scholar
  231. [231]
    W.T. Koiter: On the nonlinear theory of thin elastic shells, Proc. Kon. Ned. Wet., B69, (1966), 1–54.MathSciNetGoogle Scholar
  232. [232]
    W.T. Koiter: Foundations and basic equations of sheU theory. A survey of recent progress, in Theory of Thin Shells (Copenhagen 1967), Springer Berlin Heidelberg 1969, 93–105.Google Scholar
  233. [233]
    A. L. Goldenwejzer: Theory of thin elastic shells (in Russian), Gostekhizdat, Moscow 1953.Google Scholar
  234. [234]
    P.M. Naghdi: Foundations of elastic shell theory, in: Progress in Solid Mechanics, 4, North Holland, Amsterdam 1963, 1–90.Google Scholar
  235. [235]
    I.H. Donnell: Beams, plates and shells, McGraw Hill, New York 1975.Google Scholar
  236. [236]
    M.K. Duszek: Equations of the theory of large deflections of plastic shells, (in Polish), Rozpr. Inz. 20, 1972, 389–407.MATHGoogle Scholar
  237. [237]
    M.K. Duszek: A systematic study of kinematics of shells at large strains and displacements, Bull. Acad. Pol. Sci., Cl IV, 26, 1978, 39–47.MATHGoogle Scholar
  238. [238]
    M.K. Duszek, A. Sawczuk: On fundamental relations of plastic shell theory, (in Polish), Rozpr. Inz., 18, 1970, 717–731.Google Scholar
  239. [239]
    M. Kleiber: General theory of elastic-plastic shells, (in Polish), Shell Structures (Cracow 1974), PWN, Warsaw 1979 (in press).Google Scholar
  240. [240]
    A. Sawczuk: Lagrangian formulation of large deflection theories of plastic shells, Bull. Acad. Pol. Sci., Cl. IV, 19, 1971, 247–252.Google Scholar
  241. [241]
    A. Sawczuk: Problems of the theory of moderately large deflections of rigid-plastic shells, (in Polish), Mech. Teor. Stos., 9, 1971, 335–354.MathSciNetMATHGoogle Scholar
  242. [242]
    O.N. Shablii, M.S. Mikhalishin: Limit equilibrium of cylindrical rigid-plastic shells of sign sensitive materials, (in Russian), Probl. Protchnosti, 1973, No. 8, 23–29.Google Scholar
  243. [243]
    Z. Waszczyszyn: Calculation of finite deflections of elastic-plastic plates and rotationally symmetric shells (in Polish), Technological University Cracow, Rep. No. 5, Cracow 1970.Google Scholar
  244. [244]
    M.K. Duszek: Plastic analysis of cylindrical sandwich shells accounting for geometry changes, (in Polish), Rozpr. Inz. 15, 1967, 653–663.MATHGoogle Scholar
  245. [245]
    M.K. Duszek: Plastic analysis of cylindrical shells subjected to large deflections, Arch. Mech. Stos., 18, 1969, 599–614.Google Scholar
  246. [246]
    M.K. Duszek: Plastic analysis of shallow spherical shells at moderately large deflections, in: Theory of Thin Shells, (Copenhagen 1967), Springer, Berlin 1969, 374–388.Google Scholar
  247. [247]
    M.K. Duszek, M. Mitov: Plastic analysis of shells in the large deflection range, (in Polish), Rozpr. Inz., 1978.Google Scholar
  248. [248]
    M.K. Duszek, A. Sawczuk: Load-deflection relations for rigid-plastic cylindrical shells beyond the incipient collapse load, Int. J. Mech. Sci., 12, 1970, 839–848.Google Scholar
  249. [249]
    K.A. Koba, O.N. Shablii: Large deflections of rigid plastic shallow shells in hinged, restrained edge, Mekh. Tverd. Tela No. 5, 1973, 173–179.Google Scholar
  250. [250]
    U.P. Lepik: Large deflection of rigid-plastic cylindrical shells under axial tension and external pressure, Nucl. Eng. Des., 4, 1966, 29–38.Google Scholar
  251. [251]
    I.G. Teregulov: Large deflecti ons of elastic plastic shallow, rigidly clamped shells, (in Russian), in: Proc. 7th AU-Union Conf. Shells Plates (Dniepropetrovsk 1969), Nauka, Moscow 1970, 578–581.Google Scholar
  252. [252]
    M.K. Duszek: Stability analysis of rigid, perfectly-plastic structures at the yield point load, Buckling of Structures, (Cambridge, Mass. 1974), Springer, Berlin 1976, 106–116.Google Scholar
  253. [253]
    M. Kleiber: Kinematics and deformation processes in materials subjected to finite elastic-plastic strain, Int. J. Eng. Sci., 13, 1975, 513–525.MATHGoogle Scholar
  254. [254]
    M. Kleiber: Lagrangean and Eulerian finite element formulation for large strain elasto-plasticity, Bull. Acad. Pol. Sci., Cl. IV, 23, 1975, 117–126.Google Scholar
  255. [255]
    R.H. Lance, J.F. Soechting: A displacement bounding principle in finite plasticity, Int. J. Solids Structures, 6, 1970, 1103–1118.Google Scholar
  256. [256]
    G. Maier, D.C. Drucker: Effects of geometry changes on essential features of inelastic materials, Journ. Eng. Mech. Div. Proc. ASCE 1973, 819–834g.Google Scholar
  257. [257]
    M. Kleiber: Large deformations of elastic-plastic solids, Theory and numerical analysis of structures, (in Polish), IPPT Rep. 13/78, Warsaw 1978.Google Scholar
  258. [258]
    M.I. Erkhov: Approximate theory of dynamic loading of plastic shells in: Proc. 7th All-Union Conf. Shells and Plates (Dnepropetrovsk 1969), Nauka, Moscow 1970, 230–234.Google Scholar
  259. [259]
    M. Jones: A literature review on the dynamic plastic response of structures, Shock Vibr. Digest, 8, 1975, 89–105.Google Scholar
  260. [260]
    H. Stolarski: Assessement of large displacements of a rigid-plastic shell withholding a localized impact, Nucl. Eng. Design, 41, 1977, 327–334.Google Scholar
  261. [261]
    H. Stolarski: Extremum principle for dynamics of shells in the large displacement range, in: Proc. IUTAM Thin Shell (Tbilissi 1978), North Holland, Amsterdam 1979.Google Scholar
  262. [262]
    Z. Waszczyszyn: Finite elastic-plastic deflections of orthotropic shells of revolution, Exact equations and calculations, Bull. Acad. Pol. Sci., Cl. IV, 16, 1968, 461–470.Google Scholar
  263. [263]
    T. Wierzbicki: Dynamics of plastic structures, (in Polish), Arkady, Warsaw 1979 (in press).Google Scholar
  264. [264]
    M. Janas, J. A. König: Limit analysis of shells, (in Polish), Arkady, Warsaw 1966.Google Scholar
  265. [265]
    M.T. Huber: Specific distortion energy as a measure of (in Polish), Crasop. Techn. Lwow, vol. 22, 1904, p. 81, Reprinted in Pisma (collected works), vol. 2, PWN, Warsaw 1956.Google Scholar
  266. [265]
    R. von Mises: Mechanik der festen Körper im plastisch deformablen Zustand. Gött. Nachr., Math. Phys. Kl. 1913, p. 582–592.Google Scholar
  267. [266]
    Ch. A. Coulomb: Essai sur une application de règle de Maximis et Minimis à quelques problèmes statiques relatifs à l’architecture, Mém. de math, et phys., vol. 7, 1773, p. 343.Google Scholar
  268. [267]
    H. Tresca: Mémoire pur l’écoulement des corps solides, Mém, prés, par div. sav., vol. 18, 1868, p. 733–799.Google Scholar
  269. [268]
    R. von Mises: Mechanik der plastischen Formänderung von Kristallen, Zeitschr. für Angew. Math, und Mech., vol. 8, 1928, p. 161–185.MATHGoogle Scholar
  270. [269]
    R. Hill, Mathematical Theory of Plasticity, Oxford University Press, 1950.MATHGoogle Scholar
  271. [270]
    W. Olszak and W. Urbanowski: The generalized distortion energy in the theory of anisotropic bodies, Bull. Acad. Pol. Sci., Sér. Sci. Tech., 5, 1957, p. 29–37.MATHGoogle Scholar
  272. [271]
    W. Olszak and W. Urbanowski: The tensor of moduli of plasticity, Bull. Acad. Pol. Sci., Sér. Sci. Tech., 5, 1957, p. 39–45.MATHGoogle Scholar
  273. [272]
    W. Olszak and Urbanowski: The flow function and the yield condition for nonhomogeneous anistropic bodies, Bull. Acad. Pol. Sci., Sér. Sci. Tech., 4, 1957.Google Scholar
  274. [273]
    M. Sh. Mikeladze: On the ultimate load of initially anisotropic shells, (in Russian), Dokl. Akad. Nauk SSSR, 98 (1954), 921–923.MathSciNetMATHGoogle Scholar
  275. [274]
    M. Sh. Mikeladze: On the plastic flow of anisotropic shells, (in Russian), Izv. Akad. Nauk. SSSR, OTN (1955), 8, 67–80.MathSciNetGoogle Scholar
  276. [275]
    D. Niepostyn: The limit analysis of an orthotropic circular cylinder, Arch. Mech. Stos., 8, 1956, 565–580.MathSciNetMATHGoogle Scholar
  277. [276]
    M. Sh. Mikeladze: Rigid-plastic analysis of anisotropic plates and shells, IX Congr. Int. Mec. Appliquée (Brussels 1956), Actes 8, 1957.Google Scholar
  278. [277]
    M. Sh. Mikeladze: General theory of anisotropic rigid plastic shells, (in Russian), Izv. Akad. Nauk. SSSR, OTN (1957), 1, 85–94.Google Scholar
  279. [278]
    M. Sh. Mikeladze: Elasto-plastic equilibrium of anistropic shells, (in Russian, Soobshch. Akad. Nauk Graz. SSR, 20 (1958), 13–20.Google Scholar
  280. [279]
    A. Sawczuk: Piecewise linear theory of anistropic plasticity and its application to limit analysis problems, Arch. Mech. Stos., 11, 1959, 541–557.MathSciNetMATHGoogle Scholar
  281. [280]
    A. Sawczuk: Yield condition for anistropic shells, Bull. Acad. Polon. Sci., Cl. IV, 8, 1960, 213–277.Google Scholar
  282. [281]
    Z. Mrôz: The load carrying capacity of orthotropic shells, Arch. Mech. Stos. 12, 1960, 85–107.MathSciNetMATHGoogle Scholar
  283. [282]
    A. Sawczuk: On the theory of anisotropic plates and shells, Arch. Mech. Stos. 13, 1961, 355–366.MathSciNetMATHGoogle Scholar
  284. [283]
    Yu. Nemirovski and Yu. Rabotnov: Limit equilibrium of rib-reinforced cylindrical shells, (in Russian), Mekh. i Mashinostroenie (1963), 3, 83–94.Google Scholar
  285. [284]
    W. Olszak and W. Urbanowski: The plastic potential and the generalized distortion energy in the theory of non-homogeneous anistropic elasto-plastic bodies, Arch. Mech. Stos., 8, 1956, 85–110.MathSciNetMATHGoogle Scholar
  286. [285]
    W. Olszak and A. Sawczuk: Théorie de la capacité portante des constructions non-homogènes et orthtropes, Ann. Inst. Techn. Bat. Trav. Publ., 13, 1960, 517–535.Google Scholar
  287. [286]
    Yu. R. Lepik: To the ultimate load of non-homogeneous plates and shells, (in Russian), Mekh. i Mashinostroienie (1963), 4, 167–171.Google Scholar
  288. [287]
    W.E. Jahsman and R.F. Hartung and J.E. Edwards: Plastic analysis of an axisymmetrically loaded shell of revolution with meridionally varying limit stress, Proc. Symp. Non-Classical Shell Problems, (Warsaw 1963), Amsterdam 1964.Google Scholar
  289. [288]
    K. Hohenenser and W. Prager: Über die Ansätze der Mechanik isotroper Kontinua, Zeitschr. f. Angew. Math. u. Mech., vol. 12, 1932, p. 216.Google Scholar
  290. [289]
    W.W- Sokolowskij: Propagation of elastic-viseo-plastic waves in rods (in Russian), Pokl. AN SSSR, 60, 5, 1948, p. 775–778.Google Scholar
  291. [290]
    P. Perzyna: The constitutive equations for rate-sensitive plastic materials, Quart. Appl. Math., 20, 1963, p. 32LMathSciNetGoogle Scholar
  292. [291]
    M. Reiner and K. Weissenberg: Rheology Leaflet, No. 10, 1939, p. 12–30.Google Scholar
  293. [292]
    W. Olszak: Les critères de transition en elasto-visco-plasticité, Bull. Acad, Pol. Sci., Sér. Sci. Techn., 1, 1966.Google Scholar
  294. [293]
    A. Yu. Ishlinski: General theory of plasticity with Linear hardening, (in Russian), Ukr. Maternat. Zhurn. 6, (1954), 314–325.Google Scholar
  295. [294]
    W. Prager: A new method of analysing stress and strain in work-hardening plastic solids, J. Appl. Mech., 23, .1956, 493–496.MathSciNetMATHGoogle Scholar
  296. [295]
    P. Perzyna: The constitutive equations for work-hardening and rate- sensitive plastic materials, Proc. Vibr. ProbL, 4, 1963, p. 281.MathSciNetGoogle Scholar
  297. [296]
    Z. Mrôz: On the description of anisotropic work-hardening, J. Mech. Phys. Solids, vol. 15, 1967, p. 163–175.Google Scholar
  298. [297]
    Z. Mróz: An attempt to describe the behaviour of metals under cyclic loads using a more general work-hardening model, Acta Mech., vol. 7, 1969, p. 199–212.Google Scholar
  299. [298]
    A. Phillips and H. Moon: An experimental investigation concerning yield surfaces and loading surfaces, Rep. Yale Univ., Dept. of Engrg. and Appl. Sci., 1976, Cf. Acta Mechanics.Google Scholar
  300. [299]
    A. Phillips and M. Ricciutti: Fundamental experiments in plasticity and creep of aluminium, Extension of previous results, Int. of Solids and Structure, vol. 12, 1976, p. 159–171.Google Scholar
  301. [300]
    P.G. Hodge and F. Romano: Deformations of an elastic-plastic cylindrical shell with linear strain-hardening, J. Mech. Phys. Solids, 4, 1956, 145–161.MathSciNetMATHGoogle Scholar
  302. [301]
    N. Perrone and P.G. Hodge: On strain hardened circular cylindrical shells, J. Appl. Mech., 27, 1960,489–495.MathSciNetMATHGoogle Scholar
  303. [302]
    E.T. Onat and S. Yamanturk: On thermally stressed elastic plastic shells, J. Appl. Mech., 29, 1962, 108–114.MathSciNetMATHGoogle Scholar
  304. [303]
    W. Prager: Linearization in visco-plasticity, Oester. Ingenieur-Archiv., 15, 1961, 155–157.MathSciNetGoogle Scholar
  305. [304]
    R.E. Ball and S.L. Lee: Limit analysis of cylindrical shells, J. Eng. Mech. Div., Proc. ASCE, 89, No. EM3, 1963, 73–96.Google Scholar
  306. [305]
    W. Prager: Nonisothermal plastic deformation, Proc. Konikl. Akad. Wet. (B) 61, 1958, p. 176–182 (Amsterdam).MATHGoogle Scholar
  307. [306]
    W. Olszak and P. Perzyna: The constitutive equations of the flow theory for a non-stationary yield condition, Proc. 11th Congr. Appl. Mech. Munich 1964, Springer 1966, p. 545–553.Google Scholar
  308. [307]
    F. Campus: Plastification de l’acier doux en flexion plane simple, Bull. Cl. Sci., Scr. 5, vol. 49, 4, 1963.Google Scholar
  309. [308]
    J.A. König and W. Olszak: The yield criterion in the general case of nonhomogeneous (nonuniform) stress and deformation fields, Proc. Symp. “Topics in Applied Continuum Mechanics”, Springer Wien-New York 1974.Google Scholar

Copyright information

© Springer-Verlag Wien 1980

Authors and Affiliations

  • W. Olszak
    • 1
    • 2
  • A. Sawczuk
    • 1
  1. 1.Polish Academy of SciencesWarsawPoland
  2. 2.CISMUdineItaly

Personalised recommendations