Finite Rotations in the Nonlinear Theory of Thin Shells

  • W. Pietraszkiewicz
Part of the International Centre for Mechanical Sciences book series (CISM, volume 240)


The theory of finite rotations in thin shells is developed and many shell relations in terms of finite rotations are presented. Three forms of geometric boundary conditions and energetically compatible static boundary conditions are constructed. Various sets of Eulerian and Lagrangean shell equations are discussed and their consistent simplification within the first-approximation geometrically non-linear theory of isotropic elastic shells is given. A classification of shell problems with small, moderate, large and finite rotations is proposed and appropriate sets of simplified shell equations are presented.


Thin Shell Nonlinear Theory Shell Theory Elastic Shell Static Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Truesdell, C., Noll, W. , The non-linear field theories of mechanics,in Handbuch der Physik, III/3, Springer-Verlag, Berlin — Heidelberg — New York, 1965.Google Scholar
  2. 2.
    Shamina, V.A. , Determination of displacement vector from the components of deformation tensor in non-linear continuum mechanics (in Russian) , Izv. AN SSSR, Mekh. Tv. Tela, 1, 14–22, 1974.MathSciNetGoogle Scholar
  3. 3.
    Lurie, A.I., Analytical mechanics (in Russian), Nauka, Moscow, 1961.Google Scholar
  4. 4.
    Simmonds, J.G., Danielson, D.A., Nonlinear shell theory with a finite rotation vector, Proc. Kon. Ned. Ak. Wet., Ser.B, 73, 460–478, 1970.MathSciNetMATHGoogle Scholar
  5. 5.
    Simmonds, J.G., Danielson, D.A., Nonlinear shell theory with finite rotation and stress function vectors, J. Applied Mech. , Trans. ASME, Ser. E, 39, No 4, 1085–1090, 1972.CrossRefMATHGoogle Scholar
  6. 6.
    Novozhilov, V.V., Shamina, V.A., Kinematic boundary conditions in non--linear problems of the theory of elasticity (in Russian), Izv. ANSSSR Mekh. Tv. Tela, 5, 63–74, 1975.MathSciNetGoogle Scholar
  7. 7.
    Pietraszkiewicz, W. , Obroty skonczone i opis Lagrange’a w nieliniowej teorii powłok, Rozprawa habilitacyjna, Biuletyn Instytutu Maszyn Prze-pływowych PAN, 172(880), Gdansk, 1976.Google Scholar
  8. English translation: Finite rotations and Lagrangean description in the non-linear theory of shells, Polish Scientific Publishers, Warsza-wa — Poznan, 1979.Google Scholar
  9. 8.
    Pietraszkiewicz, W., Finite rotations in shells, Presented at the III IUTAM Symp. on Shell Theory, Tbilisi, Aug. 22–28,1978 (to be published in Proceedings).Google Scholar
  10. 9.
    Pietraszkiewicz, W. , Introduction to the non-linear theory of shells , Ruhr — Universität Bochum, Mitt. Inst, für Mech. , Nr 10, Bochum, 1977-Google Scholar
  11. 10.
    Pietraszkiewicz, W. , Consistent second approximation to the elastic strain energy of a shell, Z. für Angew. Math. Mech. , 59, Nr 3.A, 1979 (in print)MathSciNetGoogle Scholar
  12. 11.
    Koiter, W.T., On the nonlinear theory of thin elastic shells, Proc. Kon. Ned. Ak. Wet., Ser.B, 69, No1, 1–54, 1966.MathSciNetGoogle Scholar
  13. 12.
    Pietraszkiewicz, W. , Lagrangean non-linear theory of shells, Archives of Mechanics, 26, No 2, 221–228, 1974.MathSciNetMATHGoogle Scholar
  14. 13.
    Lichnerowicz, A., Elements of tensor calculus, Methuen & Co., London, 1962.MATHGoogle Scholar
  15. 14.
    Bowen, R.M. , Wang, C.C., Introduction to vectors and tensors, Plenum Press, New York, 1976.CrossRefMATHGoogle Scholar
  16. 15.
    Truesdell, C., A first course in rational continuum mechanics, John Hopkins University, Baltimore, Maryland, 1972.Google Scholar
  17. 16.
    Pietraszkiewicz, W., Some relations of the non-linear Reissner theory of shells (in Russian), Vestnik Leningradskogo Universiteta, Ser. Mat. Mekh., No 1, 1979 (in print).Google Scholar
  18. 17.
    Koiter, W.T., A consistent first approximation in the general theory of thin elastic shells, in Theory of Thin Shells, Proc. IUTAM Symp. Delft, 1959; North-Holland P.Co., Amsterdam, 1960, 12–33.Google Scholar
  19. 18.
    Leigh, D.C., Nonlinear continuum mechanics, McGraw-Hill, New York, 1968.Google Scholar
  20. 19.
    Korn, G.A. , Korn, T.M. , Mathematical handbook, 2nd ed., McGraw-Hill, New York, 1968.Google Scholar
  21. 20.
    Shield, R.T., The rotation associated with large strains, SIAM J. Appl. Math., 25, No 3, -483–191, 1973.MathSciNetCrossRefMATHGoogle Scholar
  22. 21.
    Gorr, G.A. , Kudryashova, L.V. , Stepa.nova, L.A., Classical problems of rigid-body dynamics, Development and present state (in Russian), Nau-kova Dumka, Kiev, 1978.Google Scholar
  23. 22.
    John, F., Estimates for the derivatives of the stresses in a thin shell and interior shell equations, Comm. Pure & Appl. Math., 18, 235–267, 1965.MathSciNetCrossRefGoogle Scholar
  24. 23.
    Koiter, W.T. , On the mathematical foundation of shell theory, Proc. Congr. Int. des Math., Nice 1970, tome 3, Gauthier-Villars, Paris 1971, 123–130.Google Scholar
  25. 24.
    Koiter, W.T. , Simmonds, J.G. , Foundations of shell theory, in Theoretical and applied mechanics, Proc. 13th IUTAM Congr., Moscow 1972, Springer-Verlag, Berlin — Heidelberg — New York, 1973, 150–175.CrossRefGoogle Scholar
  26. 25.
    Pietraszkiewicz, W. , Non-linear theories of thin elastic shells (in Polish), in Shell structures, theory and applications (in Poliph), 1, Proc. Symp. Krakow, April 25–27, 1974, Orkisz, J., Waszczyszyn, Z. , Eds., Polish Scientific Publishers, Warszawa, 1978, 27–50.Google Scholar
  27. 26.
    Danielson, D.A., Simplified intrinsic equations for arbitrary elastic shells, Int. J. Engng. Sci., 8, 251–259, 1970.CrossRefMATHGoogle Scholar
  28. 27.
    Pietraszkiewicz, W. , Simplified equations for the geometrically non--linear thin elastic shells, Trans. Inst. Fluid-Flow Mach. Gdansk, 75, 165–175, 1978.Google Scholar
  29. 28.
    Mushtari, K.M., Galimov, K.Z., Non-linear theory of thin elastic shells (in Russian), Kazan5, 1957. English translation: The Israel Pr. for Sci. Transi., Jerusalem 1961.Google Scholar
  30. 29.
    Naghdi, P.M., Foundations of elastic shell theory, in Progress in Solid Mechanics, IV, Amsterdam, 1963.Google Scholar
  31. 30.
    Chernykh, K.F., Linear theory of shells,Part 2 (in Russian), Leningrad St. Univ. Press, Leningrad, 1964. English translation: NASA-TT-F-II 562, 1968.Google Scholar
  32. 31.
    Goldenveizer, A.L., Theory of thin elastic shells (in Russian), 2nd ed., Nauka, Moscow 1976.Google Scholar
  33. 32.
    Pietraszkiewicz, W. , Multivalued stress functions in the linear theory of shells, Archiwum Mechaniki Stosowanej, 20, No 1, 37–45, 1968.MATHGoogle Scholar
  34. 33.
    Pietraszkiewicz, W., Multivalued solutions for shallow shells, Archi-wum Mechaniki Stoscwanej, 20, No 1, 3–10, 1968.MATHGoogle Scholar
  35. 34.
    Wempner, G. , Finite elements, finite rotations and small strains, Int. J. Solids & Str., 5, 117–153, 1969.CrossRefMATHGoogle Scholar
  36. 35.
    Glockner, P.G., Shrivastava, J.P., On the geometry and kinematics of nonlinear deformation of shell space, in Proc. 11th Midw. Meoh. Conf. Iowa St. Univ., Aug. 18–20, 1969, 331–352.Google Scholar
  37. 36.
    Pietraszkiewicz, W., Three forms of geometrically non-linear bending shell equations, VIIIth Int. Congr. on Appl. of Math, in Engng. , Weimar, June 26 — July 2, 1978 (to he publ. in Trans. Inst, of Fluid-Flow Maoh. Gdansk) Google Scholar
  38. 37.
    Pietraszkiewicz, W. , Some problems of the non-linear theory of shells, (in Polish), in Shell structures, theory and applications (in Polish), Proceed. 2nd Polish Conf., Gołun, Nov. 6–10, 1978, General lectures, Center for Shipbld. Res. Press, Gdansk, 1978, 119–159.Google Scholar

Copyright information

© Springer-Verlag Wien 1980

Authors and Affiliations

  • W. Pietraszkiewicz
    • 1
  1. 1.Institute of Fluid-Flow MachineryPANGdańskPoland

Personalised recommendations