Vibrations of Thin Elastic Shells

  • M. Dikmen
Part of the International Centre for Mechanical Sciences book series (CISM, volume 240)


In this introductory Chapter, we first give some information about the history of shell dynamics, and then make remarks concerning the scope of these lectures. The description of the elastic shell as it shall be considered here is followed by the equations of linear shell dynamics in general, and b, a particular differential operator.


Cylindrical Shell Free Vibration Edge Effect Thin Shell Rotatory Inertia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Euler, L., Tentamen de sono campanarum, Nov. Comm. Acad. Sci. Petropolitanae, 10, 261, 1766.Google Scholar
  2. 2.
    Bernoulli, J., Essai théorique sur la vibration des plaques élastiques, Nov. Acta Petropolitanae, 5, 1789.Google Scholar
  3. 3.
    Aron, H., Das Gleichgewicht und die Bewegung einer unendlich dünnen, beliebig gekrümmten, elastischen Schale, J. für reine und ang. Math., 78, 136, 1874.MATHGoogle Scholar
  4. 4.
    Mathieu, E., Mémoire sur le mouvement vibratoire des cloches, J. de l’Ecole Polytechnique., 51, 177, 1882.Google Scholar
  5. 5.
    Poisson, S. D., Mémoire sur l’équilibre et le mouvement des corps élastiques, Mem. de l’Acad. Paris, 8, 545, 1829.Google Scholar
  6. 6.
    Lord Rayleigh, On the bending and vibration of thin elastic shells, especially of cylindrical form, Proc, Eoy. Soc. London, Ser. A 45, 105, 1888.MATHGoogle Scholar
  7. 7.
    Lord Rayleigh, Theory of Sound, Vols. I, II, second ed., Macmillan, London, 1894 and 1896.MATHGoogle Scholar
  8. 8.
    Love, A. E. H., The small free vibrations and deformation of a thin elastic shell, Phil . Trans. Roy. Soc. London, Ser. A 179, 491, 1888.MATHGoogle Scholar
  9. 9.
    Love, A. E. H., Note on the present state of the theory of thin elastic shells, Proc. Roy. Soc. London, Ser. A 149, 100, 1891.Google Scholar
  10. 10.
    Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, fourth ed., Cambridge University Press, Cambridge, 1927.MATHGoogle Scholar
  11. 11.
    Basset, A. B., On the extension and flexion of cylindrical and spherical thin elastic shells, Phil. Trans. Roy. Soc. London, Ser. A 181, 433, 1890.MATHGoogle Scholar
  12. 12.
    Lamb, H,, On the deformation of an elastic shell, Proc. London Math. Soc, 21, 119, 1890.MathSciNetMATHGoogle Scholar
  13. 13.
    Dikmen, M., Direkte Schalentheorie, Teil I, Lecture Notes-Braunschweig, 1970.Google Scholar
  14. 14.
    Yamashita, K., and Aoki, I., On the frequencies of the sound emitted by Japanese hanging bells, Mem. Coll. Soi. Kyoto (A), 15, 323, 1932.Google Scholar
  15. 15.
    Aoki, I., Experimental studies on the sound of a Japanese temple-bell. Mem. Coll. Sci. Kyoto (A), 15, 311, 1932.Google Scholar
  16. 16.
    Aoki, I., Study of the sound emitted by the Japanese Dohachi. Mem. Coll. Soi. Kyoto (A), 16, 377, 1933.Google Scholar
  17. 17.
    Strutt, M. J. O., Eigenschwingungen einer Kegelschale. Ann. Phys., 17, 729, 1933.Google Scholar
  18. 18.
    van Urk, A. Th. und Hut, G. B., Messung der Radial Schwingungen von Aluminiumkegelschalen, Ann. Phys., 17, 915, 1933.Google Scholar
  19. 19.
    Flügge, W., Schwingungen zylindrischer Schalen, Z. angew. Math. Mech., 12, 425, 1933.Google Scholar
  20. 20.
    Flügge, W., Statik und Dynamik der Schalen, third ed., Springer, Berlin/Göttingen/Heidelberg, 1964 (first ed. 1934).Google Scholar
  21. 21.
    Federhofer, K., Über die Eigenschwingungen der geschlossenen Kugelschale bei gleichförmigem Oberflächendrucke, Z. angew. Math. Mech., 15., 26, 1935.MATHGoogle Scholar
  22. 22.
    Federhofer, K., Über die Eigenschwingungen der axial gedrückten I..reisZylinderschale, Sitzungsber. Akad. Wiss. Wien, Math.-Nat. Kl. IIa, 145, 681, 1936.MATHGoogle Scholar
  23. 23.
    Federhofer, K., Zur Berechnung der Eigenschwingungen der Kugelschale, Sitzungsber. Akad. Wise. Wien, Math.-Nat. Kl., 146, 57, 1937.MATHGoogle Scholar
  24. 24.
    Federhofer, K., Eigenschwingungen der Kegelschale, Ing.-Arch., 9, 288, 1938.MATHGoogle Scholar
  25. 25.
    Federhofer, K., Zur Schwingzahlberechnung des dünnwandigen Hohlreifens, Ing.-Arch., 10, 125, 1939.MATHGoogle Scholar
  26. 26.
    Reissner, E., On vibrations of shallow spherical shells, J. Appl. Phys., 17, 1038, 1946.MathSciNetMATHGoogle Scholar
  27. 27.
    Reissner, E., Stresses and small displacements of shallow spherical shells, J. Math, and Phys., 25, 279, 1947.MathSciNetGoogle Scholar
  28. 28.
    Arnold, R. N. and Warburton, G. B., Flexural vibrations of the walls of thin cylindrical shells having freely supported ends, Proc. Roy. Soc., A 197, 238, 1949.MATHGoogle Scholar
  29. 29.
    Krylov, A. N., Radial vibrations of a hollow cylinder, in Collected Works, Vol. 3, Pt. II, Akad. Nauk SSR Press, Moscow/Leningrad, 1949.Google Scholar
  30. 30.
    Reissner, E., On axisymmetrical deformation of thin shells of revolution, in Proc. Symp. on Appl. Math. Am. Math. Soc, 3, 27, 1950.MathSciNetGoogle Scholar
  31. 31.
    Niordson, F. I. N., Transmission of shock waves in thinwalled cylindrical tubes, K. Tekn. Hogsk. Handl., 57, 1952.Google Scholar
  32. 32.
    Niordson, F. I. N., Vibrations of a cylindrical tube containing flowing fluid, K. Tekn. Hogsk. Handl., 73, 1953.Google Scholar
  33. 33.
    Mindlin, R. D. and Bleich, H. H., Response of an elastic cylindrical shell to a transverse step shock wave, J. Appl. Mech., 20, 189, 1953.MathSciNetMATHGoogle Scholar
  34. 34.
    Arnold, R. N. and Warburton, G. B., The flexural vibrations of thin cylinders, Proc. Inst. Meoh. Eng. London, A 167, 62, 1953.Google Scholar
  35. 35.
    Baron, M. L. and Bleich, H. H., Tables of frequencise and modes of free vibrations of infinitely long thin cylindrical shells, J. Appl. Meoh., 21, 178, 1954.MATHGoogle Scholar
  36. 36.
    Reissner, E., On transverse vibrations of thin, shallow elastic shells, Quart. Appl. Math., 13, 169, 1955.MathSciNetMATHGoogle Scholar
  37. 37.
    Reissner, E., On axi-symmetrical vibrations of shallow spherical shells, Quart. Appl. Math., 13, 279, 1955.MathSciNetMATHGoogle Scholar
  38. 38.
    Yu, Y. Y., Free vibrations of thin cylindrical shells having finite lengths with freely supported and clamped edges, J. Appl. Meoh., 22, 547, 1955.MATHGoogle Scholar
  39. 39.
    Cremer, L., Theorie der Luftschalldämmung zylindrischer Schalen, Aoustica, 5, 245, 1955.Google Scholar
  40. 40.
    Huth, J. H. and Cole, J. D., Elastic stress waves produced by pressure loads on a spherical shell, J. Appl. Meoh., 22, 473, 1955.MATHGoogle Scholar
  41. 41.
    Weibel, E., The Strains and the Energy in Thin Elastic Shells of Arbitrary Shape for Arbitrary Deformation, Diss. Zürich, 1955.Google Scholar
  42. 42.
    Lin, T. C. and Morgan, G. W., A study of axisymmetric vibrations of cylindrical shells as affected by rotatory inertia and transverse shear, J. Appl. Mech., 23, 255, 1956.MATHGoogle Scholar
  43. 43.
    Naghdi, P. M. and Cooper, R. M,, Propagation of elastic waves in cylindrical shells, including the effects of transverse shear and rotatory inertia, J. Acoust. Soc. Am., 28, 56, 1956.Google Scholar
  44. 44.
    Cooper, R. M. and Naghdi, P. M., Propagation of nonaxially symmetric waves in elastic cylindrical shells, J. Acoust. Soc. Am., 29, 1365, 1957.MathSciNetGoogle Scholar
  45. 45.
    Johnson, M. W. and Reissner, E., On transverse vibrations of shallow spherical shells, Quart. Appl. Math., 15, 367, 1957.MathSciNetGoogle Scholar
  46. 46.
    Mann-Nachbar, P., The interaction of an acoustic wave and an elastic spherical shell, Quart. Appl. Math., 15, 83, 1957.MathSciNetMATHGoogle Scholar
  47. 47.
    Mirsky, I. and Herrmann, G., Nonaxially symmetric motions of cylindrical shells, J. Acoust. Soc. Am., 29, 1116, 1957.MathSciNetGoogle Scholar
  48. 48.
    Herrmann, G. and Mirsky, I., Three-dimensional and shell-theory analysis of axially symmetric motions in cylinders, J. Appl. Mech., 23, 563, 1956.MathSciNetMATHGoogle Scholar
  49. 49.
    Mirsky, I. and Herrmann, G., Axially symmetric motions of thick cylindrical shells, J. Appl. Mech., 25, 97, 1958.MathSciNetMATHGoogle Scholar
  50. 50.
    Yu, Y. Y., Vibrations of thin cylindrical shells analysed by means of Donnell-type equations, J. Aerospace Sci., 25, 699, 1958.MATHGoogle Scholar
  51. 51.
    Gazis, D. C., Exact analysis of the plane-strain vibrations of thick-walled hollow cylinders, J. Acoust. Soc. Am., 30, 786, 1958.Google Scholar
  52. 52.
    Gazis, D. C., Three-dimensional investigation of the propagation of waves in hollow circular cylinders, J. Acoust. Soc. Am., 31, 568, 1959.MathSciNetGoogle Scholar
  53. 53.
    Gol’denveizer, A. L., Theory of Elastic Thin Shells, Pergamon Press, New York, 1961.Google Scholar
  54. 54.
    Gol’denveizer, A. L., Asymptotic properties of eigenvalues in problems of the theory of thin elastic shells, Appl. Math. Mech. (PMM), 25, 1077, 1961.Google Scholar
  55. 55.
    Gol’denveizer, A. L., Qualitative analysis of free vibrations of an elastic thin shell, Appl. Math. Mech. (PMM), 30, 110, 1965.Google Scholar
  56. 56.
    Ross, Jr., E. W., Asymptotic analysis of the axisymmetric vibrations of shells, J. Appl. Mech., 33., 85, 1966.MATHGoogle Scholar
  57. 57.
    Ross, Jr., E. W., Transition solutions for axisymmetric shell vibration, J. Math. Phys., 45, 335, 1966.MATHGoogle Scholar
  58. 58.
    Ross, Jr., E. W., On inextensional vibrations of thin shells, J. Appl. Mech., 35, 516, 1968.MATHGoogle Scholar
  59. 59.
    Gol’denveizer, A. L., Classification of integrals of the dynamic equations of the linear two-dimensional theory of shells, Appl. Math, Meoh. (VMM), 37, 559, 1973.Google Scholar
  60. 60.
    Chernyshev, C. N., On some properties of integrals of the dynamic equations of shell theory, Mechanics of Solids (Mekh. Tverd. Tela), 8, 55, 1973.Google Scholar
  61. 61.
    Tovstik, P. E., Low frequency oscillations of convex shells of revolution, Mechanics of Solids (Mekh. Tverd. Tela), 10, 95, 1975.Google Scholar
  62. 62.
    Bolotin, V. V., The edge effect in the oscillations of elastic shells, Appl. Math. Mech. (VMM), 24, 1257, I960.Google Scholar
  63. 63.
    Moskalenko, V. N,, On the frequency spectra of natural vibrations of shells of revolution, Appl. Math. Mech. (VMM), 36, 279, 1972.MATHGoogle Scholar
  64. 64.
    Chernyshev, G. N., Asymptotic method of investigation of short-wave oscillations of shells, Appl. Math. Mech. (VMM), 39, 319, 1975.MATHGoogle Scholar
  65. 65.
    Boardman, A. D., O’Connor, D. E. and Young, P. A., Symmetry and its Applications in Science. Mc Graw-Hill, London/New York, 1973.Google Scholar
  66. 66.
    Perrin, R. and Charnley, T., Group theory and the bell, J. Sound and Vibr., 31, 411, 1973.Google Scholar
  67. 67.
    Wigner, E. P., Group Theory, Academic Press, New York/London, 1959.MATHGoogle Scholar
  68. 68.
    Lorch, E. R., Spectral Theory, Oxford University Press, New York, 1962.MATHGoogle Scholar
  69. 69.
    Dunford, N. and Schwartz, J T., Linear Operators, Vols. I, II, III, Interscience, New York, 1957, 1963, 1971.Google Scholar
  70. 70.
    Bolotin, V. V., On the density of distribution of natural frequencies of thin elastic shells. Appl. Math. Mech. (VMM), 538, 27, 1963.Google Scholar
  71. 71.
    Aslanyan, A. G. and Lidskii, V. B., Spectrum of a system describing the vibrations of a shell of revolution, Appl. Mavh. Mech. (VMM), 35, 701, 1971.Google Scholar
  72. 72.
    Tovstik, P. E., On the density of the vibration frequencies of thin shells of revolution, Appl. Math. Mech. (VMM), 36, 270, 1972.MATHGoogle Scholar
  73. 73.
    Gulgazaryan, G. R., The spectrum of a moment-free operator in the theory of thin shells of revolution, Differential Equations, 10 ,28, 1975.MATHGoogle Scholar
  74. 74.
    Gulgazaryan, G. R., Lidskii, V. B. and Eskin, G. I., Spectrum of a membrane system in the case of a thin shell of arbitrary outline, Siber. Math. J., 14, 681, 1975.Google Scholar
  75. 75.
    Aslanian, A. G., Kuzina, Z. N., Lidskii, V. B. and Tulovskii, V. N., Distribution of the natural frequencies of a thin elastic shell of arbitrary outline, Appl. Math. Mech. (PMM) , 37, 571, 1973MathSciNetGoogle Scholar
  76. 76.
    Aslanian, K. O. and Tulovskii, V. N., Asymptotic distribution of the eigenfrequencies of elastic shells, Mathematical Physics, 18, 120, 1973.Google Scholar
  77. 77.
    Hörmander, L., Linear Partial Differential Operators, Springer, Berlin/Heidelberg/New York, 1969.MATHGoogle Scholar
  78. 78.
    Miranda, C., Partial Differential Equations of Elliptic Type, Springer, Berlin/Heidelberg/New York, 1970.MATHGoogle Scholar
  79. 79.
    Douglis, A. and Nirenberg, L.,Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math., 8, 503, 1955.MathSciNetMATHGoogle Scholar
  80. 80.
    Kac, M., Can one hear the shape of a drum? Amer. Math. Montly., 73, 1, 1966.MATHGoogle Scholar
  81. 81.
    Stewartson, K. and Waechter, R. T., On hearing the shape of a drum: further results, Proc. Comb. Phil. Soc, 69, 353, 1971.MATHGoogle Scholar
  82. 82.
    Waechter, R. T., On hearing the shape of a drum: an extension to higher dimensions, Proc. Comb. Phil. Soc, 72, 439, 1972.MathSciNetMATHGoogle Scholar
  83. 83.
    Hildebrandt, T. H. and Schoenberg, I. J., On linear functional operations and the moment problem for a finite interval in one or several dimensions, Ann. of Math., 34., 317, 1933.MathSciNetGoogle Scholar
  84. 84.
    Dikmen, M., Bazi moment problemleri (english summary), in Mustafa Inan Anisina, Istanbul Teknik Universitesi, Istanbul, 1971.Google Scholar
  85. 85.
    Ainola, L. I., On the inverse problem of natural vibrations of elastic shells, Appl. Math. Mech. (PMM), 35., 317, 1971.MATHGoogle Scholar
  86. 86.
    Courant, R. and Hilbert, D., Methods of Mathematical- Physics, Vol. II, Interscience, New York, 1966.Google Scholar
  87. 87.
    Landau, L. D. and Lifshitz, E. M., Electrodynamics of Continuous Media, Pergamon Press, Oxford, 1963.Google Scholar
  88. 88.
    Germogenova, O. A., Geometrical theory for flexure waves in shells, J. Acoust. Soc. Am., 53, 535, 1973.MATHGoogle Scholar
  89. 89.
    Hadamard, J., Leçons sur la Propagation des Ondes et les Equations de l’Hydrodynamique, Hermann, Paris, 1903.MATHGoogle Scholar
  90. 90.
    Cohen, H. and Suh, S. L., Wave propagation in elastic surfaces, J. Math, and Mech., 19, II17, 1970.MathSciNetGoogle Scholar
  91. 91.
    Cohen, H. and BerkaI, A. B., Wave propagation in elastic membranes, Journal of Elasticity, 2, 45, 1972.Google Scholar
  92. 92.
    Cohen, H. and Berkal, A. B., Wave propagation in elastic shells, Journal of Elasticity, 2, 35, 1972.Google Scholar
  93. 93.
    Armenakas, A. E., On the accuracy of some dynamic shell theories, J. Eng. Mech. Div. ASCE., 93, 95, 1967.Google Scholar
  94. 94.
    Armenakas, A. E., Gazis, D. C. and Herrmann, G., Free Vibrations of Circular Cylindrical Shells, Pergamon Press, Oxford, 1969.MATHGoogle Scholar
  95. 95.
    Greenspon, J. E., Vibrations of a thick-walled cylindrical shell. Comparison of the exact theory with approximate theories, J. Acoust. Soc. Am., 32, 571, 1960.MathSciNetGoogle Scholar
  96. 96.
    Nigul, U., Three-dimensional shell theory of axially symmetric transient waves in a semi-infinite cylindrical shell, Arch. Mech. Stosowanej, 19, 1967.Google Scholar
  97. 97.
    Graff, K. F., Wave Motion in Elastic Solids, Clarendon Press, Oxford, 1975.MATHGoogle Scholar
  98. 98.
    Murty, A. V. K. A., Frequency spectrum of shells, AIAA Journal, 13, 1109, 1975.MATHGoogle Scholar
  99. 99.
    Steele, C. R., Bending waves in shells, Quart. Appl. Math., 34, 385, 1977.MathSciNetMATHGoogle Scholar
  100. 100.
    Lizarev, A. D., Natural vibration modes of spherical shells, Mechanics of Solids (Mekh. Tverd. Tela), 10, 157, 1975.Google Scholar
  101. 101.
    Forsberg, K., Axisymmetric and beam-type vibrations of thin cylindrical shells, AIAA Journal, 7, 221, 1969.Google Scholar
  102. 102.
    Forsberg, K., Influence of boundary conditions on the modal characteristics of cylindrical shells, AIAA Journal, 2, 2150, 1964.Google Scholar
  103. 103.
    Yamaki, N., Flexural vibrations of thin cylindrical shells, Rep. Inst. High Speed Mech., Japan, 1970.Google Scholar
  104. 104.
    Bergman, R. M., Investigation of the free vibrations of noncircular cylindrical shells, Appl. Math. Mech. (VMM), 37, 1068, 1973.MATHGoogle Scholar
  105. 105.
    Charnley, T. and Perrin, R., Torsional vibrations of bells, J. Sound and Vibr., 40, 227, 1975.Google Scholar

Copyright information

© Springer-Verlag Wien 1980

Authors and Affiliations

  • M. Dikmen
    • 1
  1. 1.Technical UniversityIstanbulTurkey

Personalised recommendations