Advertisement

Introduction to General Shell Theory

  • W. B. Krätzig
Part of the International Centre for Mechanical Sciences book series (CISM, volume 240)

Abstract

As we all know from daily experience we are living in a geometrically three-dimensional world. The aim of any shell theory is to describe the mechanical behaviour of thin, three-dimensional bodies in a two-dimensional manner, namely by only two spatial coordinates. Because any unique mapping from a three- to a two-dimensional space is incompatible with our experience, this goal obviously can only be achieved in an approximative sense.

Keywords

Strain Energy Density Moment Tensor Shell Theory Middle Surface Section Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Budiansky, B., Sanders, J.L.: On the Best First Order linear Shell Theory. Progress in Applied Mechanics, Macmillan, New York 1963, p. 129.Google Scholar
  2. [2]
    Green, A.E., Naghdi, P. M., Wainright: A General Theory of a Cosserat Surface. Arch. Rat. Mech. Analysis 20 (1965), p. 287.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Green, A.E., Zerna, W.: Theoretical Elasticity.2. Edition, At the Clarendon Press, Oxford 1968.MATHGoogle Scholar
  4. [4]
    Koiter, W.T.: A consistent First Approximation in the General Theory of Thin Shells. Proc. IUTAM-Symp. on Theory of Thin Elastic Shells. North-Holland Publ. Comp., Amsterdam, 1959.Google Scholar
  5. [5]
    Koiter, W.T.: On the foundations of the linear theory of thin elastic shells. Proc. Kon. Ned. Ak. Wet., Vol. 73 (1970), p. 169.MathSciNetMATHGoogle Scholar
  6. [6]
    Koiter, W.T., Simmonds, J.G.: Foundations of Shell Theory. Rep. Nr. 473, Lab. Eng. Mech., Delft University of Technology, 1972.Google Scholar
  7. [7]
    Zerna, W. : Herleitung der ersten Approximation der Theorie elastischer Schalen. Abhandl. Braunschw. Wissensch. Gesellschaft 19 (1967), p. 52.MATHGoogle Scholar
  8. [8]
    Green, A.E., Naghdi, P.M.: Non-i so thermal Theory of Rods, Plates and Shells. Int. Journ. Solids Struct., 6 (1970), p. 209.CrossRefMATHGoogle Scholar
  9. [9]
    John, F. : Estimates for the Derivatives of the Stresses in a Thin Shell and Interior Shell Equations. Comm. Pure Appl. Math., 18 (1965), p. 235.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Sensenig, C.B.: A Shell Theory Compared with the Exact Three- dimensional Theory of Elasticity. Int. Journ. Eng. Science 6 (1968), p. 435.CrossRefMATHGoogle Scholar
  11. [11]
    Basar, Y., Krätzig, W.B.: Mechanik der Flächentragwerke. Vieweg-Verlag (in Print).Google Scholar
  12. [12]
    Cohen, H., De Silva, C.N.: Nonlinear Theory of Elastic Directed Surfaces. Journ. Math. Phys., 7 (1966), p. 960.CrossRefMATHGoogle Scholar
  13. [13]
    Krätzig, W.B.: Optimale Schalengrundgleichungen und deren Leistungsfähigheit. ZAMM 54 (1974), p. 265.CrossRefMATHGoogle Scholar
  14. [14]
    Krätzig, W.B.: Die erste Approximation der Schalentheorie und deren Unscharf ebereich. Konstruktiver Ingenieurbau in Forschung und Praxis, Werner-Verlag 1976, p. 33.Google Scholar
  15. [15]
    Krätzig, W.B.: Thermodynamics of Deformations and Shell Theory Techn. Report Nr. 71–3, Institut für Konstruktiven Ingenieurbau der RUB, Bochum 1971.Google Scholar
  16. [16]
    Naghdi, P.M.: The Theory of Shells and Plates. Randbuch der Physik VI, A2, Springer-Verlag, Berlin-Heidelberg 1972.Google Scholar
  17. [17]
    Naghdi, P.M.: Foundation of Elastic Shell Theory. Progress in Solid Mechanics, Vol. IV. North-Holland Publ. Comp., Amsterdam 1963.Google Scholar
  18. [17]
    Reissner, E.: On the foundation of the theory of elastic shells. Proc. 11th Int. Congr. Appl. Mech., München 1964. Springer-Verlag 1966, S. 20.Google Scholar
  19. [19]
    Tonti, E.: On. the Formal Structure of Physical Theories. Inst. Mat. Politecnico Milano 1975.Google Scholar
  20. [20]
    Oden, J.T., Ready, J.N.: On Dual-Complementary Variational Principles. Int. Journ. Eng. Sc., Vol. 12 (1974), p. 1.CrossRefMATHGoogle Scholar
  21. [21]
    Naghdi, P.M.: Further results in the derivation of the general equations of elastic shells. Int. Journ. Engng. Sci. 2 (1964), p. 269.MathSciNetCrossRefGoogle Scholar
  22. [22]
    Pietraszkiewicz, W. : Introduction to the Non-Linear Theory of Shells. Ruhr-Universität Bochum, Mitteilungen aus dem Institut für Mechanik, Mai 1977.Google Scholar

Copyright information

© Springer-Verlag Wien 1980

Authors and Affiliations

  • W. B. Krätzig
    • 1
  1. 1.Ruhr UniversityBochumGermany

Personalised recommendations