Relationships Between Plasma, CSF and Brain Tryptophan

  • G. Curzon
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 15)


In many circumstances plasma free tryptophan correlated better than plasma total tryptophan with brain tryptophan concentration (immobilization, fasting, acute liver failure, some drugs). Also, using a modified Oldendorf method it was found that changes of plasma tryptophan binding considerably affected brain tryptophan uptake. Usually, changes of plasma tryptophan binding and non-esterified fatty acid concentration were associated. This led either to changes of plasma free and brain tryptophan concentrations (see above) or to “buffering” in which the proportion of plasma tryptophan in the free state changed but not its concentration.

The plasma free tryptophan-brain tryptophan relationship was confirmed in rats after portocaval anastomosis or sham operation. In these experiments brain tryptophan changes did not correlate with plasma amino acids competing with tryptophan for transport to the brain.

Determinations on plasma, lumbar and ventricular CSF from psychiatric patients suggest that plasma free tryptophan concentration provides an index of CSF tryptophan and 5-hydroxyindoleacetic acid concentrations and hence of 5-hydroxytryptamine turnover in the human central nervous system.


Plasma Amino Acid Human Central Nervous System Tryptophan Concentration Plasma Tryptophan Free Tryptophan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bloxam, D. L., Curzon, G.: A study of proposed determinants of brain tryptophan concentration in rats after portocaval anastomosis or sham operation. J. Neurochem. 31, 1255–1263 (1978).PubMedCrossRefGoogle Scholar
  2. Coppen, A., Eccleston, E. G., Peet, M.: Total and free tryptophan concentration in the plasma of depressive patients. Lancet ii, 60–63 (1973).CrossRefGoogle Scholar
  3. Curzon, G., Joseph, M. H., Knott, P. J.: Effects of immobilization and food deprivation on rat brain tryptophan metabolism. J. Neurochem. 19, 1967–1974 (1972).PubMedCrossRefGoogle Scholar
  4. Curzon, G., Kantamaneni, B. D., Winch, A., Rojas-Bueno, I., Murray-Lyon, M., Williams, R.: Plasma and brain tryptophan changes in experimental acute hepatic failure. J. Neurochem. 21, 137–146 (1973).PubMedCrossRefGoogle Scholar
  5. Curzon, G., Knott, P. J.: Effects on plasma and brain tryptophan in the rat of drugs and hormones that influence the concentration of unesterified fatty acid in the plasma. Br. J. Pharmac. 50, 197–204 (1974).CrossRefGoogle Scholar
  6. Curzon, G., Fernando, J. C. R.: Effect of aminophylline on tryptophan and other aromatic amino acids in plasma, brain and other tissues and on brain 5-hydroxytryptamine metabolism. Br. J. Pharmac. 58, 533–545 (1976).CrossRefGoogle Scholar
  7. Curzon, G., Kantamaneni, B. D., Bartlett, J. R., Bridges, P. K.: Transmitter precursors and metabolites in human ventricular cerebrospinal fluid. J. Neurochem 26, 613–615 (1976).PubMedCrossRefGoogle Scholar
  8. Curzon, G., Fernando, J. C. R.: Drugs altering insulin secretion: effects on plasma and brain concentrations of aromatic amino acids and on brain 5-hydroxytryptamine turnover. Br. J. Pharmac. 60, 401–408 (1977).CrossRefGoogle Scholar
  9. Curzon, G., Kantamaneni, B. D.: Transmitters and related substances in brain material: an index of terminal and/or post-mortem biochemical change. Lancet i, 156–157 (1978).CrossRefGoogle Scholar
  10. Cummings, M. G., James, J. H., Soeters, P. B., Keane, J. M., Foster, J., Fischer, J. E.: Regional brain study of indoleamine metabolism in the rat in acute hepatic failure. J. Neurochem. 27, 741–746 (1976).PubMedCrossRefGoogle Scholar
  11. Fernando, J. C. R., Knott, P. J., Curzon, G.: The relevance of both plasma free tryptophan and insulin to rat brain tryptophan concentration. J. Neurochem. 27, 343–345 (1976).PubMedCrossRefGoogle Scholar
  12. Fernstrom, J. D., Wurtman, R. J.: Brain serotonin content: increase following ingestion of carbohydrate diet. Science 174, 1023–1025 (1971).PubMedCrossRefGoogle Scholar
  13. Gessa, G. L., Tagliamonte, A.: Possible role of free serum tryptophan in the control of brain tryptophan concentration and serotonin synthesis. Adv. Biochem. Psychopharmac. 11, 119–132 (1974).Google Scholar
  14. Hutson, P. H., Knott, P. J., Curzon, G.: Control of brain tryptophan concentration in rats on a high fat diet. Nature 262, 142–143 (1976).PubMedCrossRefGoogle Scholar
  15. Knight, G. C.: Bi-frontal stereotactic tractotomy: an atraumatic operation of value in the treatment of intractable psychoneurosis. Brit. J. Psychiat. 115, 257–266 (1969).PubMedCrossRefGoogle Scholar
  16. Knott, P. J., Curzon, G.: Free tryptophan in plasma and brain tryptophan metabolism. Nature 239, 452–453 (1972).PubMedCrossRefGoogle Scholar
  17. Knott, P. J.: Curzon, G.: Tryptophan and tyrosine disposition and brain tryptophan metabolism in acute carbon tetrachloride poisoning. Biochem. Pharmacol. 24, 963–966 (1975).PubMedCrossRefGoogle Scholar
  18. Knott, P. J., Hutson, P. H., Curzon, G.: Fatty acid and tryptophan changes on disturbing groups of rats and caging them singly. Pharmacol. Biochem. Behav. 7, 245–252 (1977).PubMedCrossRefGoogle Scholar
  19. Mac Kenzie, R. G., Trulson, M. E.: Effects of insulin and streptozotocininduced diabetes on brain tryptophan and serotonin metabolism in rats. J. Neurochem. 30, 205–211 (1978).CrossRefGoogle Scholar
  20. McMenamy, R. H.: Binding of indole analogues to human serum albumin. Effects of fatty acids. J. biol. Chem. 24, 4235–4243 (1965).Google Scholar
  21. Møller, S. E., Kirk, L., Fremming, K. H.: Plasma amino acids as an index for subgroups in manic depressive psychosis: correlation to effect of tryptophan. Psychopharmacology 49, 205–213 (1976).PubMedCrossRefGoogle Scholar
  22. Pardridge, W. M.: Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J. Neurochem. 28, 103–108 (1977).PubMedCrossRefGoogle Scholar
  23. Perez-Cruet, J., Chase, T. N., Murphy, D. L.: Dietary regulation of brain tryptophan metabolism by plasma ratio of free tryptophan and neutral amino acids in humans. Nature 248, 693–695 (1974).PubMedCrossRefGoogle Scholar
  24. Sullivan, P. A., Murnaghan, D., Callaghan, N., Kantamaneni, B. D., Curzon, G.: Cerebral transmitter precursors and metabolites in advanced renal disease. J. Neurol. Neurosurg. Psychiat. 41, 581–588 (1978).PubMedCrossRefGoogle Scholar
  25. Young, S. N., Lal, S., Feldmuller, F., Sourkes, T. L., Ford, R. M., Kiely, M., Martin, J. B.: Parallel variation of ventricular CSF tryptophan and free serum tryptophan in man. J. Neurol. Neurosurg. Psychiat. 39, 61–65 (1976).PubMedCrossRefGoogle Scholar
  26. Young, S. N., Tsang, D., Lal., S., Sourkes, T. L.: Changes in the tryptophan content of excised human cerebral cortex. J. Neurochem. 28, 439–440 (1977).PubMedCrossRefGoogle Scholar
  27. Yuwiler, A., Oldendorf, W. H., Geller, E., Braun, L.: Effect of albumin binding and amino acid competition on tryptophan uptake into brain. J. Neurochem. 27, 1015–1023 (1977).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1979

Authors and Affiliations

  • G. Curzon
    • 1
  1. 1.Department of NeurochemistryInstitute of Neurology LaboratoriesLondonUK

Personalised recommendations