When—and Why—Should Nutritional State Control Neurotransmitter Synthesis?

  • R. J. Wurtman
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 15)


The rates at which neurons synthesize such Group I neurotransmitters as serotonin, acetylcholine, and the catecholamines norepinephrine and dopamine depend physiologically on the availability to them of the circulating precursors for these compounds (tryptophan, choline and tyrosine, respectively). The concentrations of precursor in the circulation and in neurons change rapidly after food consumption, depending upon what is eaten. Nutrient intake thus normally influences the synthesis of these neurotransmitters. Neurons that emit signals by releasing serotonin, acetylcholine, dopamine, or norepinephrine participate in the control of a number of bodily functions and behaviors (e.g., hunger, food choice, sleep, alertness, sensitivity to environmental stimuli and disease states). Dietary manipulations (or the consumption of individual nutrients) can thus be used as tools for the experimental analysis of functions mediated by monoaminergic or cholinergic neurons, and as adjuncts in the treatment of some diseases of these neurons. It is unclear “why” the evolutionary process should have “allowed” the neurotransmission mediated by acetylcholine or the monoamine transmitters to be influenced by the vagaries of food choice. One possible benefit that might accrue to the organism as a result of this dependency would be the use of cholinergic or monoaminergic neurons as “sensors”, providing the brain with information about peripheral metabolic state. Thus carbohydrate consumption, which—by altering plasma amino acid levels accelerates brain serotonin synthesis—enhances the release of a transmitter (serotonin) that tends to diminish the animal’s desire to consume carbohydrates.


Tyrosine Hydroxylase Tardive Dyskinesia Brain Serotonin Neurotransmitter Synthesis Tyrosine Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cohen, E. L., Wurtman, R. J.: Brain acetylcholine: increase after systemic choline administration. Life Sciences 16, 1095–1102 (1975).PubMedCrossRefGoogle Scholar
  2. Cohen, E. L., Wurtman, R. J.: Brain acetylcholine synthesis: control by dietary choline. Science 191, 561–562 (1976).PubMedCrossRefGoogle Scholar
  3. Davis, K. L., Berger, P. A., Hollister, L. E.: Choline for tardive dyskinesia. New Eng. J. Med. 293, 152 (1975).PubMedGoogle Scholar
  4. Fernstrom, J. D., Wurtman, R. J.: Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173, 149–152 (1971 a).PubMedCrossRefGoogle Scholar
  5. Fernstrom, J. D., Wurtman, R. J.: Brain serotonin content: increase following ingestion of carbohydrate diet. Science 174, 1023–1025 (1971 b).PubMedCrossRefGoogle Scholar
  6. Fernstrom, J. D., Wurtman, R. J.: Elevation of plasma tryptophan by insulin in the rat. Metabolism 21, 337–342 (1972 a).PubMedCrossRefGoogle Scholar
  7. Fernstrom, J. D., Wurtman, R. J.: Brain serotonin content: regulation by plasma neutral amino acids. Science 178, 414–416 (1972 b).PubMedCrossRefGoogle Scholar
  8. Fernstrom, J. D., Wurtman, R. J.: Nutrition and the brain. Scientific American 230, 84–91 (1974).PubMedCrossRefGoogle Scholar
  9. Gibson, C. J., Wurtman, R. J.: Physiological control of brain norepinephrine synthesis by brain tyrosine concentration. Life Sciences 22, 1399–1406 (1978).PubMedCrossRefGoogle Scholar
  10. Growdon, J. H., Hirsch, M. J., Wurtman, R. J., Weiner, W.: Oral choline administration to patients with tardive dyskinesia. New Eng. J. Med. 297, 524–527 (1977).PubMedCrossRefGoogle Scholar
  11. Growdon, J. H., Gelenberg, A. J., Doller, L., Hirsch, M. J., Wurtman, R. J.: Lecithin can suppress tardive dyskinesia. New Eng. J. Med. 298, 1029 to 1030 (1978).PubMedGoogle Scholar
  12. Hirsch, M. J., Growdon, J. H., Wurtman, R. J.: Relations between dietary choline intake, serum choline levels, and various metabolic indices. Metabolism 27, 953–960 (1978).PubMedCrossRefGoogle Scholar
  13. Pardridge, W. M.: Regulation of amino acid availability to the brain. In: Nutrition and the Brain, Vol. I (Wurtman, R. J., Wurtman, J. J., eds.), pp. 141–204. New York: Raven Press. 1977.Google Scholar
  14. Scally, M. J., Wurtman, R. J.: Brain tyrosine level controls striatal dopamine synthesis in haloperidol-treated rats. J. Neural Transm. 41, 1–6 (1977).PubMedCrossRefGoogle Scholar
  15. Ulus, I., Scally, M. J., Wurtman, R. J.: Enhancement by choline of the induction of adrenal tyrosine hydroxylase by phenoxybenzamine, 6-hydroxydopamine, insulin, or exposure to cold. J. Pharmacol. Exp. Ther. 204, 676–682 (1978).PubMedGoogle Scholar
  16. Wurtman, J. J., Wurtman, R. J.: Fenfluramine and fluoxetine spare protein consumption while suppressing caloric intake by rats. Science 198, 1178–1180 (1977).PubMedCrossRefGoogle Scholar
  17. Wurtman, R. J., Larin, F., Mostafapour, S., Fernstrom, J. D.: Brain catechol synthesis: control by brain tyrosine concentration. Science 185, 183–184 (1974).PubMedCrossRefGoogle Scholar
  18. Wurtman, R. J., Fernstrom, J. D.: Control of brain neurotransmitter synthesis by precursor availability and nutritional state. Biochem. Pharmacol. 25, 1691–1696 (1976).PubMedCrossRefGoogle Scholar
  19. Wurtman, R. J., Hirsch, M. J., Growdon, J. H.: Lecithin consumption raises serum free choline levels. Lancet II, 68–69 (1977).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1979

Authors and Affiliations

  • R. J. Wurtman
    • 1
  1. 1.Department of Nutrition and Food ScienceLaboratory of Neuroendocrine RegulationCambridgeUSA

Personalised recommendations