Advertisement

The Role of Blood-Brain Barrier Transport of Tryptophan and Other Neutral Amino Acids in the Regulation of Substrate-Limited Pathways of Brain Amino Acid Metabolism

  • W. M. Pardridge
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 15)

Summary

Many pathways of essential neutral amino acid metabolism in the CNS are influenced by precursor availability. Since the delivery of circulating amino acids to brain cells is primarily controlled by the rate of amino acid transport through the blood-brain barrier (BBB), pathways of brain amino acid metabolism are ultimately influenced by the activity (Km, Vmax) of the BBB neutral amino acid transport system. The Km of BBB transport is in the 0.1–0.6 mM range, which approximates the physiologic plasma levels and forms the basis of the unusual sensitivity of the brain to competition effects on neutral amino acid transport. Unlike the brain, the Km of amino acid transport into other organs is in the 1–10 mM range or greater, which frees these tissues from competition effects in the physiologic range of plasma amino acids. Tryptophan circulates 80–90% bound to albumin; however, the capacity/affinity ratio of the BBB neutral amino acid transport system exceeds the capacity/affinity ratio of albumin binding of tryptophan, which enables the carrier to strip tryptophan off albumin as it traverses the brain capillary. The activity of the BBB neutral amino acid transport system is probably not modulated by insulin, but is influenced by changes in thyroid hormone status; the transport system is also induced in states of hepatic encephalopathy and this induction process is the primary cause of the increased brain tryptophan and serotonin levels in cirrhosis.

Keywords

Hepatic Encephalopathy Amino Acid Transport Neutral Amino Acid Plasma Amino Acid Neutral Amino Acid Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adibi, S. A., Mercer, D. W.: Protein digestion in human intestine as reflected in luminal, mucosal and plasma amino acid concentrations after meals. J. Clin. Invest. 52, 1586–1594 (1973).PubMedCrossRefGoogle Scholar
  2. Ames, A., III, Parks, J. M.: Functional homogeneity of leucine pool in retina cells. J. Neurochem. 27, 1017–1025 (1976).PubMedCrossRefGoogle Scholar
  3. Baños, G., Daniel, P. M., Moorhouse, S. R., Pratt, O. E.: The influx of amino acids into the brain of the rat in vivo: The essential compared with some non-essential amino acids. Proc. R. Soc. Lond. (Biol.) 183, 59–70 (1973).CrossRefGoogle Scholar
  4. Begin, N., Scholefield, P. G.: The uptake of amino acids by mouse pancreas in vitro. II. The specificity of the carrier systems. J. Biol. Chem. 240, 332–338 (1965).Google Scholar
  5. Betz, A. L., Gilboe, D. D.: Effect of pentobarbital on amino acid and urea flux in the isolated dog brain. Am. J. Physiol. 224, 580–587 (1973).PubMedGoogle Scholar
  6. Birkmayer, W., Danielczyk, W., Neumayer, E., Riederer, P.: L-Dopa level in plasma, primary condition for the kinetic effect. J. Neural Transm. 34, 133–143 (1973).PubMedCrossRefGoogle Scholar
  7. Chan, Y. Z., Huang, K. C.: Microperfusion studies on renal tubular transport of tryptophan derivatives in rats. Am. J. Physiol. 221, 575–579 (1971).PubMedGoogle Scholar
  8. Chaplin, E. R., Goldberg, A. L., Diamond, I.: Leucine oxidation in brain slices and nerve endings. J. Neurochem. 26, 701–707 (1976).PubMedCrossRefGoogle Scholar
  9. Chung-Hwang, E., Khurana, H., Fisher, H.: The effect of dietary histidine level on the carnosine concentration of rat olfactory bulbs. J. Neurochem. 26, 1087–1091 (1976).PubMedCrossRefGoogle Scholar
  10. Coyle, J. T.: Tyrosine hydroxylase in rat brain-cof actor requirements, regional and subcellular distribution. Biochem. Pharmacol. 21, 1935 to 1942 (1972).PubMedCrossRefGoogle Scholar
  11. Cummings, M. G., Soeters, P. B., James, J. H., Keane, J. M., Fischer, J. E.: Regional brain indoleamine metabolism following chronic portacaval anastomosis in the rat. J. Neurochem. 27, 501–509 (1976).PubMedCrossRefGoogle Scholar
  12. Curzon, G., Kantamaneni, B. D., Fernando, J. C, Woods, M. S., Cavanagh, J. B.: Effects of chronic porto-caval anastomosis on brain tryptophan, tyrosine and 5-hydroxytryptamine. J. Neurochem. 24, 1065–1070 (1975).PubMedCrossRefGoogle Scholar
  13. Daniel, P. M., Love, E. R., Pratt, O. E.: Hypothyroidism and amino acid entry into brain and muscle. Lancet 2, 872 (1975).PubMedCrossRefGoogle Scholar
  14. Daniel, P. M., Moorhouse, S. R., Pratt, O. E.: Do changes in blood levels of other aromatic amino acids influence levodopa therapy? The Lancet 1, 95 (1976).CrossRefGoogle Scholar
  15. De Montis, M. G., Olianas, M. C., Haber, B., Taglamonte, A.: Increase in large neutral amino acid transport into brain by insulin. J. Neurochem. 30, 121–124 (1978).PubMedCrossRefGoogle Scholar
  16. Felig, P., Wahren, J., Ahlborg, G.: Uptake of individual amino acids by the human brain. Proc. Soc. Exp. Biol. Med. 142, 230–231 (1973).PubMedCrossRefGoogle Scholar
  17. Friedman, P. A., Kappelman, A. H., Kaufman, S.: Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain. J. Biol. Chem. 247, 4165–4173 (1972).PubMedGoogle Scholar
  18. Guroff, G., Udenfriend, S.: Studies on aromatic amino acid uptake by rat brain in vivo. J. Biol. Chem. 237, 803–806 (1962).PubMedGoogle Scholar
  19. Hertz, M. M., Bolwig, T. G.: Blood-brain barrier studies in the rat: An indicator dilution technique with tracer sodium as an internal standard for estimation of extracerebral contamination. Brain Res. 107, 333–343 (1976).PubMedCrossRefGoogle Scholar
  20. Jacoby, J. H., Mueller, G., Wurtman, R. J.: Thyroid state and brain monoamine metabolism. Endocrinology 97, 1332–1335 (1975).PubMedCrossRefGoogle Scholar
  21. James, J. H., Escourrou, J., Fischer, J. E.: Blood brain neutral amino acid transport activity is increased after portacaval anastomosis. Science 200, 1395–1397 (1978).PubMedCrossRefGoogle Scholar
  22. Larsen, P. R., Ross, J. E., Tapley, D. F.: Transport of neutral, dibasic and N-methyl substituted amino acids by rat intestine. Biochim. Biophys. Acta 88, 570–577 (1964).PubMedGoogle Scholar
  23. Le Cam, A., Freychet, P.: Neutral amino acid transport. Characterization of the A and L system in isolated rat hepatocytes. J. Biol. Chem. 252, 148–156 (1977).Google Scholar
  24. Lingard, J., Rumrich, G., Young, J. A.: Kinetics of L-histidine transport in the proximal convolution of rat nephron studied using the stationary microperfusion technique. Pfluegers Arch. 342, 13–28 (1973).CrossRefGoogle Scholar
  25. Madras, B. K., Cohen, E. L., Messing, R., Munro, H. N., Wurtman, R. J.: Revelance of free tryptophan in serum to tissue tryptophan concentrations. Metabolism 23, 1107–1116 (1974).PubMedCrossRefGoogle Scholar
  26. Matthyse, S., Baldessarini, R. J., Vogt, M.: Methionine adenosyltransferase: A double-isotope derivative, enzymatic assay. Anal. Biochem. 48, 410 to 421 (1972).CrossRefGoogle Scholar
  27. McMenamy, R. H., Lund, C. C, Van Marche, J., Oncley, J. L.: The binding of L-tryptophan in human plasma at 37 °C. Arch. Biochem. Biophys. 93, 135–139 (1961).PubMedCrossRefGoogle Scholar
  28. Neff, N. H., Spano, P. F., Groppetti, A., Wang, C. T., Costa, E.: A simple procedure for calculating the synthesis rate of norepinephrine, dopamine, and serotonin in rat brain. J. Pharmacol. Exp. Ther. 176, 701–710 (1971).PubMedGoogle Scholar
  29. Oldendorf, W. H.: Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain. Res. 24, 372–376 (1970).PubMedCrossRefGoogle Scholar
  30. Pardridge, W. M., Oldendorf, W. H.: Kinetic analysis of blood-brain barrier transport of amino acids. Biochim. Biophys. Acta 401, 128–136 (1975).PubMedCrossRefGoogle Scholar
  31. Pardridge, W. M., Oldendorf, W. H.: Transport of metabolic substrates through the blood-brain barrier. J. Neurochem. 28, 5–12 (1977).PubMedCrossRefGoogle Scholar
  32. Pardridge, W. M.: Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J. Neurochem. 28, 103–108 (1977 a).PubMedCrossRefGoogle Scholar
  33. Pardridge, W. M.: Regulation of amino acid availability to the brain. In: Nutrition and the Brain, Vol. 1 (Wurtman, R. J., Wurtman, J. J., eds.), pp. 141-204. New York. 1977 b.Google Scholar
  34. Pardridge, W. M.: Unidirectional influx of glutamine and other neutral amino acids in liver of fed and fasted rat in vivo. Am. J. Physiol. 232, E492–E496 (1977 c).PubMedGoogle Scholar
  35. Riggs, T. R.: Hormones and transport across cell membranes. In: Biochemical Actions of Hormones, Vol. 1 (Litwack, G., ed.), pp. 157-208. New York. 1970.Google Scholar
  36. Riggs, T. R., McKirahan, K. J.: Action of insulin on transport of L-alanine in rat diaphragm in vitro. J. Biol. Chem. 248, 6450–6455 (1973).PubMedGoogle Scholar
  37. Ruderman, N. B., Ross, P. S., Berger, M., Goodman, M. N.: Regulation of glucose and ketone-body metabolism in brain of anesthetized rats. Biochem. J. 138, 1–10 (1974).PubMedGoogle Scholar
  38. Schwartz, J. C., Lampart, C, Rose, C.: Histamine formation in rat brain in vivo: Effects of histidine loads. J. Neurochem. 19, 801–810 (1972).PubMedCrossRefGoogle Scholar
  39. Wade, L. A., Katzman, R.: Synthetic amino acids in the nature of L-Dopa transport at the blood-brain barrier. J. Neurochem. 25, 837–842 (1975).PubMedCrossRefGoogle Scholar
  40. Winter, C.G., Christensen, H. N.: Migration of amino acids across the membrane of the human erythrocyte. J. Biol. Chem. 239, 872–878 (1964).PubMedGoogle Scholar
  41. Yuwiler, A., Oldendorf, W. H., Geller, E., Braun, L.: Effect of albumin binding and amino acid competition on tryptophan uptake into brain. J. Neurochem. 28, 1015–1023 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1979

Authors and Affiliations

  • W. M. Pardridge
    • 1
  1. 1.Department of Medicine, Division of Endocrinology and MetabolismUCLA School of MedicineLos AngelesUSA

Personalised recommendations