Summary: Circulating Tryptophan, Brain Tryptophan, and Psychiatric Disease

  • R. J. Wurtman
  • W. M. Pardridge
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 15)


This symposium has addressed four important questions related to circulating tryptophan and the brain. These are: (1) What controls the uptake of circulating tryptophan into the brain? (2) What compounds can be measured in human blood that provide reliable indices of brain tryptophan uptake and utilization? (3) Might the metabolism of tryptophan, or its uptake into or utilization by the brain, be altered in psychiatric diseases? and, (4) Are tryptophan supplements useful in the treatment of depression and other psychiatric disorders—either by themselves or as adjuncts to drug therapy? Our views concerning these questions are summarized below. We hope that they also represent consensus opinions.


Plasma NEFA Large Neutral Amino Acid Plasma Tryptophan Free Tryptophan Plasma Amino Acid Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, M. A., Fernstrom, J. D.: Salicylate reduces serum insulin concentrations in the rat. Life Sci. 19, 813–818 (1976).PubMedCrossRefGoogle Scholar
  2. Daniel, P. M., Love, E, R., Pratt, O. E.: Hypothyroidism and amino acid entry into brain and muscle. Lancet 2, 872 (1975).PubMedCrossRefGoogle Scholar
  3. Fernstrom, J.D., Wurtman, R.J.: Brain serotonin content: increase following ingestion of carbohydrate diet. Science 174, 1023–1025 (1971).PubMedCrossRefGoogle Scholar
  4. Fernstrom, J. D., Larin, F., Wurtman, R. J.: Correlations between brain tryptophan and plasma neutral amino acids following food consumption. Life Sci. 13, 517–524 (1973).CrossRefGoogle Scholar
  5. Fernstrom, J. D., Wurtman, R. J.: Nutrition and the brain. Sci. Am. 230, 84–91 (1974).PubMedCrossRefGoogle Scholar
  6. Gibson, C. J., Wurtman, R. J.: Physiological control of brain norepinephrine synthesis by brain tyrosine concentration. Life Sci. 22, 1399–1406 (1978).PubMedCrossRefGoogle Scholar
  7. James, J. H., Escourrour, J., Fischer, J. E.: Blood-brain neutral amino acid transport activity is increased after portocaval anastomosis. Science 200, 1395–1397(1978).PubMedCrossRefGoogle Scholar
  8. Lassen, N. A., Trap-Jensen, J., Alexander, S. C., Olesen, J., Paulson, O. B.: Blood-brain barrier studies in man using the double-indicator method. Am. J. Physiol. 220, 1627–1633 (1971).PubMedGoogle Scholar
  9. Madras, B. K., Cohen, E. L., Messing, R., Munro, H. N., Wurtman, R. J.: Relevance of free tryptophan in serum to tissue tryptophan concentrations. Metabolism 23, 1107–1116 (1974).PubMedCrossRefGoogle Scholar
  10. Pardridge, W. M., Oldendorf, W. H.: Kinetic analysis of blood-brain barrier transport of amino acids. Biochim. Biophys. Acta 401, 128–136 (1975).PubMedCrossRefGoogle Scholar
  11. Pardridge, W. M.: Regulation of amino acid availability to the brain. In: Nutrition and the Brain (Wurtman, R. J., Wurtman, J. J., eds.), pp. 141 to 200. New York: Raven Press. 1977 a.Google Scholar
  12. Pardridge, W. M.: Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J. Neurochem. 28, 103–108 (1977 b).PubMedCrossRefGoogle Scholar
  13. Ross, D. S., Fernstrom, J. D., Wurtman, R. J.: The role of dietary protein in generating daily rhythms in rat liver tryptophan pyrrolase and tyrosine transaminase. Metabolism 22, 1175–1184 (1973).PubMedCrossRefGoogle Scholar
  14. Scally, M. C., Ulus, I., Wurtman, R. J.: Brain tyrosine level controls striatal dopamine synthesis in haloperidol-treated rats. Brain Res. 41, 1–6 (1977).Google Scholar
  15. Sershen, H., Lajtha, A.: Capillary transport of amino acids in the developing brain. Exp. Neurol. 53, 465–474 (1976).PubMedCrossRefGoogle Scholar
  16. Smith, H. G., Lakatos, C.: Effects of acetylsalicylic acid on serum protein binding and metabolism of tryptophan in man. J. Pharm. Pharmacol. 23, 180–189 (1971).PubMedCrossRefGoogle Scholar
  17. Tagliamonte, A., Biggio, G., Vargiu, L., Gessa, G. L.: Increase of brain tryptophan and stimulation of serotonin synthesis by salicylate. J. Neurochem. 20, 909–912 (1973).PubMedCrossRefGoogle Scholar
  18. Woods, S. C, Porte, D.: Neural control of the endocrine pancreas. Physiol. Rev. 54, 596–619 (1974).PubMedGoogle Scholar
  19. Wurtman, R. J., Rose, C. M., Chou, C, Larin, F.: Daily rhythms in the concentrations of various amino acids in human plasma. New Engl. J. Med. 279, 171–175 (1968).PubMedCrossRefGoogle Scholar
  20. Wurtman, R. J.: Diurnal rhythms in mammalian protein metabolism. In: Mammalian Protein Metabolism (Munro, H. N., ed.). New York: Academic Press. 1970.Google Scholar
  21. Wurtman, R. J., Larin, F., Mostafapour, S., Fernstrom, J. D.: Brain catechol synthesis: control by brain tyrosine concentration. Science 185, 183 to 184 (1974).PubMedCrossRefGoogle Scholar
  22. Yudilevich, D. L., De Rose, N., Sepulveda, F. V.: Facilitated transport of amino acids through the blood-brain barrier of the dog studied in single capillary circulation. Brain Res. 44, 569–578 (1972).PubMedCrossRefGoogle Scholar
  23. Yuwiler, A., Oldendorf, W. H., Geller, E., Braun, L.: Effect of albumin binding and amino acid competition of tryptophan uptake into brain. J. Neurochem. 28, 1015–1023 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1979

Authors and Affiliations

  • R. J. Wurtman
    • 1
    • 2
  • W. M. Pardridge
    • 1
    • 2
  1. 1.Laboratory of Neuroendocrine RegulationMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of MedicineUCLA School of MedicineLos AngelesUSA

Personalised recommendations