Advertisement

Distribution of Tryptophan in Erythrocytes, Leukocytes and Thrombocytes, and Its Binding to Plasma Albumin

  • P. Baumann
  • M. Perey
  • S. Laurian
  • F. Grasset
  • A. Steck
  • J. M. Gaillard
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 15)

Summary

The extended theory about a dysfunction of the serotoninergic system in depression and schizophrenia includes the hypothesis of a disturbance in the transport systems of tryptophan and tyrosine from blood to brain. It would be interesting to know if blood cells may be used as a model for the central transport mechanisms of these amino acids. After an oral load, the in vivo distribution of L-tryptophan (50 mg/kg) was studied in the blood plasma, in the different blood cells and its binding to plasma albumin, in six healthy, seven schizophrenic and two depressive subjects.

In all the compartments studied, tryptophan reached a peak, 1–2 hours after the load. Before and after the load, the variation of the tryptophan concentration in the erythrocytes was parallel to the plasma free tryptophan, whereas the uptake of this amino acid was higher in leukocytes and thrombocytes than in erythrocytes.

However, this model does not show differences between schizophrenic and normal subjects with regard to the transport of tryptophan and tyrosine in these cells.

Keywords

Schizophrenic Patient Amino Acid Transport Plasma Albumin Depressive Subject Large Neutral Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonioli, J. A., Robinson, J. W. L., Vannotti, A.: Amino-acid transport by various leucocyte preparations: A comparative survey. Enzym. biol. clin. 8, 113–134 (1967).Google Scholar
  2. Baron, D. N., Ahmed, S.A.: Intracellular concentrations of water and of the principal electrolytes determined by analysis of isolated human leucocytes. Clin. Sci. 37, 205–219 (1969).PubMedGoogle Scholar
  3. Baumann, P., Perey, M.: The analysis of free tryptophan in human blood with the ultrafiltrator: a comparison with other methods. Clin. Chim. Acta 76, 223–231 (1977).PubMedCrossRefGoogle Scholar
  4. Boyum, A.: Isolation of mononuclear cells by one centrifugation and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand. J. Clin. Laborat. Invest. 21, suppl. 97, 77–88 (1968).Google Scholar
  5. Curzon, G., Knott, P. J.: Rapid effects of environmental disturbance on rat plasma unesterified fatty acid and tryptophan concentrations and their prevention by antilipolytic drugs. Br. J. Pharmac. 54, 389–396 (1975).CrossRefGoogle Scholar
  6. Domino, E. F., Krause, R. R.: Free and bound serum tryptophan in drugfree normal controls and chronic schizophrenic patients. Biol. Psychiat. 8, 265–279 (1974).PubMedGoogle Scholar
  7. Duncombe, W. G.: The colorimetric micro-determination of non-esterified fatty acids in plasma. Clin. Chim. Acta 9, 122–125 (1964).PubMedCrossRefGoogle Scholar
  8. Felig, P., Wahren, J., Räf, L.: Evidence of inter-organ amino-acid transport by blood cells in humans. Proc. Nat. Acad. Sci. U.S.A. 70, 1775–1779 (1973).CrossRefGoogle Scholar
  9. Flentge, F., Venema, K., Korf, J.: Automated assay of tryptophan at the nanogram level: determination of tryptophan in cerebrospinal fluid and of total and nonprotein bound tryptophan in serum. Biochem. Med. 11, 234–241 (1974).PubMedCrossRefGoogle Scholar
  10. Goussault, Y., Sharif, A., Bourrillon, R.: Serum albumin biosynthesis and secretion by resting and lectin stimulated human lymphocytes. Biochem. Biophysic. Res. Commun. 73, 1030–1035 (1976).CrossRefGoogle Scholar
  11. Greenwood, M. H., Lader, M. H., Kantameneni, B. D., Curzon, G.: The acute effects of oral (−)-tryptophan in human subjects. Br. J. clin. Pharmac. 2, 165–172 (1975).CrossRefGoogle Scholar
  12. Helmreich, E., Kipnis, D. M.: Amino acid transport in lymph node cells. J. Biol. Chem. 237, 2582–2589 (1962).PubMedGoogle Scholar
  13. Heyneman, R. A., Monbaliu-Bauwens, D., Vercauteren, R. E.: Hydrolytic enzymes in neutrophil and eosinophil leukocytes. Comp. Biochem. Physiol. 50B, 463–469 (1975).Google Scholar
  14. Hochella, N. J.: Automated fluorometric determination of tyrosine in blood. Anal. Biochem. 21, 227–234 (1967).PubMedCrossRefGoogle Scholar
  15. Hsia, D. Y. Y.: Utilization of leukocytes for the study of inborn errors of metabolism. Enzyme 13, 161–168 (1972).PubMedGoogle Scholar
  16. Lee, M. B., Bolger, C. D., Bridges, J. M.: Distribution of amino-acids in urine, plasma, leucocytes and erythrocytes of leukaemic and normal subjects. Acta Haemat. 42, 86–93 (1969).PubMedCrossRefGoogle Scholar
  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265 to 275 (1951).PubMedGoogle Scholar
  18. McEwen, C. R., Stallard, R. W., Juhos, E. T.: Separation of biological particles by centrifugal elutriation. Anal. Biochem. 23, 369–377 (1968).PubMedCrossRefGoogle Scholar
  19. McMenamy, R. H., Lund, C. G., Neville, G. J., Wallach, D. F. H.: Studies of unbound amino acid distributions in plasma, erythrocytes, leukocytes and urine of normal human subjects. J. Clin. Invest. 39, 1675–1687 (1960).PubMedCrossRefGoogle Scholar
  20. Medzihradsky, F., Marks, M. J., Metcalfe, J. L: A simple procedure for the separation of viable blood cells, suitable for long-term “in-vitro” experiments. Biochem. Med. 10, 153–166 (1974).PubMedCrossRefGoogle Scholar
  21. Mueller, P.S., Davis, J.M., Bunney, W.E., Weil-Malherbe, H., Cardon, P. V.: Plasma free fatty acids concentration in depressive illness. Arch. Gen. Psychiat. 22, 216–221 (1970).PubMedCrossRefGoogle Scholar
  22. Murphy, D. L., Campbell, I. C, Costa, J. L.: The brain serotonergic system in the affective disorders. Prog. Neuro-Psychopharmac. 2, 1–31 (1978).CrossRefGoogle Scholar
  23. Rauen, H.: Biochemisches Taschenbuch, Vol. 2, 2nd ed., p. 343. Berlin-Göttingen-Heidelberg-New York: Springer. 1964.Google Scholar
  24. Rosenberg, L. E., Downing, S.: Transport of neutral and dibasic amino acids by human leukocytes: Absence of defect in cystinuria. J. Clin. Invest. 44, 1382–1393 (1965).PubMedCrossRefGoogle Scholar
  25. Tissot, R.: The common pathophysiology of monoaminergic psychoses: A new hypothesis. Neuropsychobiol. 1, 243–260 (1975).CrossRefGoogle Scholar
  26. Winter, C. G.: Christensen, H. N.: Migration of amino acids across the membrane of the human erythrocyte. J. Biol. Chem. 239, 872–878 (1964).Google Scholar
  27. Yunis, A. A., Arimura, G. K., Kipnis, D. M.: Amino acid transport in blood cells. I. Effect of cations on amino acid transport in human leukocytes. J. Lab. Clin. Med. 62, 465–476 (1963).Google Scholar

Copyright information

© Springer-Verlag Wien 1979

Authors and Affiliations

  • P. Baumann
    • 1
  • M. Perey
    • 1
  • S. Laurian
    • 1
  • F. Grasset
    • 1
  • A. Steck
    • 1
  • J. M. Gaillard
    • 1
  1. 1.Centre de Recherches PsychopathologiquesClinique Psychiatrique Universitaire de LausannePrilly-LausanneSwitzerland

Personalised recommendations