Skip to main content

Non-centrosomal Microtubule Organization in Differentiated Cells

  • Chapter
  • First Online:
Book cover The Microtubule Cytoskeleton

Abstract

The centrosome consists of a pair of centrioles surrounded by pericentriolar material. During the formation of the mitotic spindle, multi-protein complexes in the pericentriolar material are involved in the nucleation and anchorage of microtubules. In postmitotic cells of many tissues, proteins of the pericentriolar material lose their association with the centrosome and redistribute to various sites in the cytoplasm, to the cellular cortex, or to the nuclear surface. Consequently, the organization of the microtubule network is changed. Localization of centrosomal proteins and organization of microtubules follow cell type-specific patterns, to fulfill specialized functions. For example, in polarized epithelia, microtubules are involved in transcytosis and establishment of epithelial polarity, in neurons microtubules are necessary for axonal transport, or in muscle microtubules participate in the assembly of sarcomeres and in the positioning of nuclei. In this review, the principles of microtubule organization in different cell types will be described. The role of microtubules in muscle cells and the potential involvement of microtubule-dependent processes in muscular diseases will be documented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad FJ, Yu W, McNally FJ, Baas PW (1999) An essential role for katanin in severing microtubules in the neuron. J Cell Biol 145:305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antin PB, Forry-Schaudies S, Friedmann TM, Tapscott SJ, Holtzer H (1981) Taxol induces postmitotic myoblasts to assemble interdigitating microtubule-myosin arrays that exclude actin filaments. J Cell Biol 90:300–308

    Article  CAS  PubMed  Google Scholar 

  • Apel ED, Lewis RM, Grady RM, Sanes JR (2000) Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J Biol Chem 275:31986–31995

    Article  CAS  PubMed  Google Scholar 

  • Attali R, Warwar N, Israel A, Gurt I, McNally E, Puckelwartz M, Glick B, Nevo Y, Ben-Neriah Z, Melki J (2009) Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis. Hum Mol Genet 18:3462–3469

    Article  CAS  PubMed  Google Scholar 

  • Bacallao R, Antony C, Dotti C, Karsenti E, Stelzer EHK, Simons K (1989) The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J Cell Biol 109:2817–2832

    Article  CAS  PubMed  Google Scholar 

  • Baas PW, Deitch JS, Black MM, Banker GA (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A 85:8335–8339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baas PW, Joshi HC (1992) Gamma-tubulin distribution in the neuron: implications for the origins of neuritic microtubules. J Cell Biol 119:171–178

    Article  CAS  PubMed  Google Scholar 

  • Baird DH, Myers KA, Mogensen M, Moss D, Baas PW (2004) Distribution of the microtubule-related protein ninein in developing neurons. Neuropharmacology 47:677–683

    Article  CAS  PubMed  Google Scholar 

  • Bell CD, Conen PE (1968) Histopathological changes in Duchenne muscular dystrophy. J Neurol Sci 7:529–544

    Article  CAS  PubMed  Google Scholar 

  • Brodu V, Baffet AD, Le Droguen PM, Casanova J, Guichet A (2010) A developmentally regulated two-step process generates a noncentrosomal microtubule network in Drosophila tracheal cells. Dev Cell 18:790–801

    Article  CAS  PubMed  Google Scholar 

  • Bruusgaard JC, Liestøl K, Gundersen K (2006) Distribution of myonuclei and microtubules in live muscle fibers of young, middle-aged, and old mice. J Appl Physiol 100:2024–2030

    Article  CAS  PubMed  Google Scholar 

  • Bugnard E, Zaal KJ, Ralston E (2005) Reorganization of microtubule nucleation during muscle differentiation. Cell Motil Cytoskeleton 60:1–13

    Article  PubMed  Google Scholar 

  • Burton PR (1988) Dendrites of mitral cell neurons contain microtubules of opposite polarity. Brain Res 473:107–115

    Article  CAS  PubMed  Google Scholar 

  • Cadot B, Gache V, Vasyutina E, Falcone S, Birchmeier C, Gomes ER (2012) Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3. EMBO Rep 13:741–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly JA, Kiosses BW, Kalnins VI (1986) Centrioles are lost as embryonic myoblasts fuse into myotubes in vitro. Eur J Cell Biol 39:341–345

    CAS  PubMed  Google Scholar 

  • Dammermann A, Merdes A (2002) Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol 159:255–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Anda FC, Pollarolo G, Da Silva JS, Camoletto PG, Feiguin F, Dotti CG (2005) Centrosome localization determines neuronal polarity. Nature 436:704–708

    Article  PubMed  Google Scholar 

  • Elhanany-Tamir H, Yu YV, Shnayder M, Jain A, Welte M, Volk T (2012) Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules. J Cell Biol 198:833–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Englander LL, Rubin LL (1987) Acetylcholine receptor clustering and nuclear movement in muscle fibers in culture. J Cell Biol 104:87–95

    Article  CAS  PubMed  Google Scholar 

  • Fant X, Srsen V, Espigat-Georger A, Merdes A (2009) Nuclei of non-muscle cells bind centrosome proteins upon fusion with differentiating myoblasts. PLoS One 4:e8303

    Article  PubMed  PubMed Central  Google Scholar 

  • Folker ES, Schulman VK, Baylies MK (2012) Muscle length and myonuclear position are independently regulated by distinct Dynein pathways. Development 139:3827–3837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folker ES, Baylies MK (2013) Nuclear positioning in muscle development and disease. Front Physiol 4:363

    Article  PubMed  PubMed Central  Google Scholar 

  • Folker ES, Schulman VK, Baylies MK (2014) Translocating myonuclei have distinct leading and lagging edges that require kinesin and dynein. Development 141:355–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridolfsson HN, Ly N, Meyerzon M, Starr DA (2010) UNC-83 coordinates kinesin-1 and dynein activities at the nuclear envelope during nuclear migration. Dev Biol 338:237–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerin CM, Kramer SG (2009) RacGAP50C directs perinuclear gamma-tubulin localization to organize the uniform microtubule array required for Drosophila myotube extension. Development 136:1411–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidemann SR, Landers JM, Hamborg MA (1981) Polarity orientation of axonal microtubules. J Cell Biol 91:661–665

    Article  CAS  PubMed  Google Scholar 

  • Holtzer H, Croop J, Dienstman S, Ishikawa H, Somlyo A (1975) Effects of cytochalasin-B and colcemid on myogenic cultures. Proc Natl Acad Sci U S A 72:513–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihrke G, Neufeld EB, Meads T, Shanks MR, Cassio D, Laurent M, Schroer TA, Pagano RE, Hubbard AL (1993) WIF-B cells: an in vitro model for studies of hepatocyte polarity. J Cell Biol 123:1761–1775

    Article  CAS  PubMed  Google Scholar 

  • Kano Y, Fujimaki N, Ishikawa H (1991) The distribution and arrangement of microtubules in mammalian skeletal muscle fibers. Cell Struct Funct 16:251–261

    Article  CAS  PubMed  Google Scholar 

  • Klarsfeld A, Bessereau JL, Salmon AM, Triller A, Babinet C, Changeux JP (1991) An acetylcholine receptor alpha-subunit promoter conferring preferential synaptic expression in muscle of transgenic mice. EMBO J 10:625–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leask A, Obrietan K, Stearns T (1997) Synaptically coupled central nervous system neurons lack centrosomal gamma-tubulin. Neurosci Lett 229:17–20

    Article  CAS  PubMed  Google Scholar 

  • Lechler T, Fuchs E (2007) Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. J Cell Biol 176:147–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malone CJ, Misner L, Le Bot N, Tsai MC, Campbell JM, Ahringer J, White JG (2003) The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115:825–836

    Article  CAS  PubMed  Google Scholar 

  • Meads T, Schroer TA (1995) Polarity and nucleation of microtubules in polarized epithelial cells. Cell Motil Cytoskeleton 32:273–288

    Article  CAS  PubMed  Google Scholar 

  • Metzger T, Gache V, Xu M, Cadot B, Folker ES, Richardson BE, Gomes ER, Baylies MK (2012) MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 484:120–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyerzon M, Fridolfsson HN, Ly N, McNally FJ, Starr DA (2009) UNC-83 is a nuclear-specific cargo adaptor for kinesin-1-mediated nuclear migration. Development 136:2725–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogensen MM (1999) Microtubule release and capture in epithelial cells. Biol Cell 91:331–341

    Article  CAS  PubMed  Google Scholar 

  • Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M (2000) Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J Cell Sci 113:3013–3023

    CAS  PubMed  Google Scholar 

  • Mogensen MM, Tucker JB, Baggaley TB (1993) Multiple plasma membrane-associated MTOC systems in the acentrosomal cone cells of Drosophila ommatidia. Eur J Cell Biol 60:67–75

    CAS  PubMed  Google Scholar 

  • Mogensen MM, Tucker JB, Stebbings H (1989) Microtubule polarities indicate that nucleation and capture of microtubules occurs at cell surfaces in Drosophila. J Cell Biol 108:1445–1452

    Article  CAS  PubMed  Google Scholar 

  • Musa H, Orton C, Morrison EE, Peckham M (2003) Microtubule assembly in cultured myoblasts and myotubes following nocodazole induced microtubule depolymerisation. J Muscle Res Cell Motil 24:301–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nekrasova OE, Amargo EV, Smith WO, Chen J, Kreitzer GE, Green KJ (2011) Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. J Cell Biol 195:1185–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen MM, Stone MC, Rolls MM (2011) Microtubules are organized independently of the centrosome in Drosophila neurons. Neural Dev 6:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oddoux S, Zaal KJ, Tate V, Kenea A, Nandkeolyar SA, Reid E, Liu W, Ralston E (2013) Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. J Cell Biol 203:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmakumar VC, Abraham S, Braune S, Noegel AA, Tunggal B, Karakesisoglou I, Korenbaum E (2004) Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton. Exp Cell Res 295:330–339

    Article  CAS  PubMed  Google Scholar 

  • Percival JM, Gregorevic P, Odom GL, Banks GB, Chamberlain JS, Froehner SC (2007) rAAV6-microdystrophin rescues aberrant Golgi complex organization in mdx skeletal muscles. Traffic 8:1424–1439

    Article  CAS  PubMed  Google Scholar 

  • Pizon V, Gerbal F, Diaz CC, Karsenti E (2005) Microtubule-dependent transport and organization of sarcomeric myosin during skeletal muscle differentiation. EMBO J 24:3781–3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prins KW, Humston JL, Mehta A, Tate V, Ralston E, Ervasti JM (2009) Dystrophin is a microtubule-associated protein. J Cell Biol 186:363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puckelwartz MJ, Kessler E, Zhang Y, Hodzic D, Randles KN, Morris G, Earley JU, Hadhazy M, Holaska JM, Mewborn SK, Pytel P, McNally EM (2009) Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum Mol Genet 18:607–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralston E, Lu Z, Ploug T (1999) The organization of the Golgi complex and microtubules in skeletal muscle is fiber type-dependent. J Neurosci 19:10694–10705

    CAS  PubMed  Google Scholar 

  • Ralston E, Ploug T, Kalhovde J, Lomo T (2001) Golgi complex, endoplasmic reticulum exit sites, and microtubules in skeletal muscle fibers are organized by patterned activity. J Neurosci 21:875–883

    CAS  PubMed  Google Scholar 

  • Reilein A, Yamada S, Nelson WJ (2005) Self-organization of an acentrosomal microtubule network at the basal cortex of polarized epithelial cells. J Cell Biol 171:845–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux KJ, Crisp ML, Liu Q, Kim D, Kozlov S, Stewart CL, Burke B (2009) Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc Natl Acad Sci U S A 106:2194–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh O, Arai T, Obinata T (1988) Distribution of microtubules and other cytoskeletal filaments during myotube elongation as revealed by fluorescence microscopy. Cell Tissue Res 252:263–273

    Article  CAS  PubMed  Google Scholar 

  • Sanes JR, Johnson YR, Kotzbauer PT, Mudd J, Hanley T, Martinou JC, Merlie JP (1991) Selective expression of an acetylcholine receptor-lacZ transgene in synaptic nuclei of adult muscle fibers. Development 113:1181–1191

    CAS  PubMed  Google Scholar 

  • Shahbazi MN, Megias D, Epifano C, Akhmanova A, Gundersen GG, Fuchs E, Perez-Moreno M (2013) CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions. J Cell Biol 203:1043–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp GA, Weber K, Osborn M (1982) Centriole number and process formation in established neuroblastoma cells and primary dorsal root ganglion neurones. Eur J Cell Biol 29:97–103

    CAS  PubMed  Google Scholar 

  • Srsen V, Fant X, Heald R, Rabouille C, Merdes A (2009) Centrosome proteins form an insoluble perinuclear matrix during muscle cell differentiation. BMC Cell Biol 10:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Starr DA, Han M (2002) Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 298:406–409

    Article  CAS  PubMed  Google Scholar 

  • Straube A, Merdes A (2007) EB3 regulates microtubule dynamics at the cell cortex and is required for myoblast elongation and fusion. Curr Biol 17:1318–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumigray KD, Chen H, Lechler T (2011) Lis1 is essential for cortical microtubule organization and desmosome stability in the epidermis. J Cell Biol 194:631–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumigray KD, Foote HP, Lechler T (2012) Noncentrosomal microtubules and type II myosins potentiate epidermal cell adhesion and barrier formation. J Cell Biol 199:513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka N, Meng W, Nagae S, Takeichi M (2012) Nezha/CAMSAP3 and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules. Proc Natl Acad Sci U S A 109:20029–20034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tassin AM, Maro B, Bornens M (1985) Fate of microtubule-organizing centers during myogenesis in vitro. J Cell Biol 100:35–46

    Article  CAS  PubMed  Google Scholar 

  • Tucker JB, Mogensen MM, Henderson CG, Doxsey SJ, Wright M, Stearns T (1998) Nucleation and capture of large cell surface-associated microtubule arrays that are not located near centrosomes in certain cochlear epithelial cells. J Anat 192:119–130

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucker JB, Paton CC, Richardson GP, Mogensen MM, Russell IJ (1992) A cell surface-associated centrosomal layer of microtubule-organizing material in the inner pillar cell of the mouse cochlea. J Cell Sci 102:215–226

    PubMed  Google Scholar 

  • Wang S, Wu D, Quintin S, Green RA, Cheerambathur DK, Ochoa SD, Desai A, Oegema K (2015) NOCA-1 functions with gamma-tubulin and in parallel to patronin to assemble non-centrosomal microtubule arrays in C. elegans. Elife 4. doi:10.7554/eLife.08649

  • Wheeler MA, Davies JD, Zhang Q, Emerson LJ, Hunt J, Shanahan CM, Ellis JA (2007) Distinct functional domains in nesprin-1alpha and nesprin-2beta bind directly to emerin and both interactions are disrupted in X-linked Emery-Dreifuss muscular dystrophy. Exp Cell Res 313:2845–2857

    Article  CAS  PubMed  Google Scholar 

  • Wilhelmsen K, Litjens SH, Kuikman I, Tshimbalanga N, Janssen H, van den Bout I, Raymond K, Sonnenberg A (2005) Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J Cell Biol 171:799–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson MH, Holzbaur EL (2012) Opposing microtubule motors drive robust nuclear dynamics in developing muscle cells. J Cell Sci 125:4158–4169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson MH, Holzbaur EL (2015) Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells. Development 142:218–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood JD, Landers JA, Bingley M, McDermott CJ, Thomas-McArthur V, Gleadall LJ, Shaw PJ, Cunliffe VT (2006) The microtubule-severing protein Spastin is essential for axon outgrowth in the zebrafish embryo. Hum Mol Genet 15:2763–2771

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Lei K, Zhou M, Craft CM, Xu G, Xu T, Zhuang Y, Xu R, Han M (2011) KASH protein Syne-2/Nesprin-2 and SUN proteins SUN1/2 mediate nuclear migration during mammalian retinal development. Hum Mol Genet 20:1061–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Felder A, Liu Y, Guo LT, Lange S, Dalton ND, Gu Y, Peterson KL, Mizisin AP, Shelton GD, Lieber RL, Chen J (2010) Nesprin 1 is critical for nuclear positioning and anchorage. Hum Mol Genet 19:329–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Bethmann C, Worth NF, Davies JD, Wasner C, Feuer A, Ragnauth CD, Yi Q, Mellad JA, Warren DT, Wheeler MA, Ellis JA, Skepper JN, Vorgerd M, Schlotter-Weigel B, Weissberg PL, Roberts RG, Wehnert M, Shanahan CM (2007a) Nesprin-1 and −2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16:2816–2833

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zaal KJ, Sheridan J, Mehta A, Gundersen GG, Ralston E (2009a) Microtubule plus-end binding protein EB1 is necessary for muscle cell differentiation, elongation and fusion. J Cell Sci 122:1401–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M (2009b) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Xu R, Zhu B, Yang X, Ding X, Duan S, Xu T, Zhuang Y, Han M (2007b) Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134:901–908

    Article  CAS  PubMed  Google Scholar 

  • Zhen YY, Libotte T, Munck M, Noegel AA, Korenbaum E (2002) NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J Cell Sci 115:3207–3222

    CAS  PubMed  Google Scholar 

  • Zhou K, Rolls MM, Hall DH, Malone CJ, Hanna-Rose W (2009) A ZYG-12-dynein interaction at the nuclear envelope defines cytoskeletal architecture in the C. elegans gonad. J Cell Biol 186:229–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Merdes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Dyachuk, V., Bierkamp, C., Merdes, A. (2016). Non-centrosomal Microtubule Organization in Differentiated Cells. In: Lüders, J. (eds) The Microtubule Cytoskeleton. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1903-7_2

Download citation

Publish with us

Policies and ethics