Non-centrosomal Microtubule Organization in Differentiated Cells

  • Vyacheslav Dyachuk
  • Christiane Bierkamp
  • Andreas Merdes


The centrosome consists of a pair of centrioles surrounded by pericentriolar material. During the formation of the mitotic spindle, multi-protein complexes in the pericentriolar material are involved in the nucleation and anchorage of microtubules. In postmitotic cells of many tissues, proteins of the pericentriolar material lose their association with the centrosome and redistribute to various sites in the cytoplasm, to the cellular cortex, or to the nuclear surface. Consequently, the organization of the microtubule network is changed. Localization of centrosomal proteins and organization of microtubules follow cell type-specific patterns, to fulfill specialized functions. For example, in polarized epithelia, microtubules are involved in transcytosis and establishment of epithelial polarity, in neurons microtubules are necessary for axonal transport, or in muscle microtubules participate in the assembly of sarcomeres and in the positioning of nuclei. In this review, the principles of microtubule organization in different cell types will be described. The role of microtubules in muscle cells and the potential involvement of microtubule-dependent processes in muscular diseases will be documented in detail.


Muscular Dystrophy Duchenne Muscular Dystrophy Microtubule Network Microtubule Organization Centrosomal Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahmad FJ, Yu W, McNally FJ, Baas PW (1999) An essential role for katanin in severing microtubules in the neuron. J Cell Biol 145:305–315CrossRefPubMedPubMedCentralGoogle Scholar
  2. Antin PB, Forry-Schaudies S, Friedmann TM, Tapscott SJ, Holtzer H (1981) Taxol induces postmitotic myoblasts to assemble interdigitating microtubule-myosin arrays that exclude actin filaments. J Cell Biol 90:300–308CrossRefPubMedGoogle Scholar
  3. Apel ED, Lewis RM, Grady RM, Sanes JR (2000) Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J Biol Chem 275:31986–31995CrossRefPubMedGoogle Scholar
  4. Attali R, Warwar N, Israel A, Gurt I, McNally E, Puckelwartz M, Glick B, Nevo Y, Ben-Neriah Z, Melki J (2009) Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis. Hum Mol Genet 18:3462–3469CrossRefPubMedGoogle Scholar
  5. Bacallao R, Antony C, Dotti C, Karsenti E, Stelzer EHK, Simons K (1989) The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J Cell Biol 109:2817–2832CrossRefPubMedGoogle Scholar
  6. Baas PW, Deitch JS, Black MM, Banker GA (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A 85:8335–8339CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baas PW, Joshi HC (1992) Gamma-tubulin distribution in the neuron: implications for the origins of neuritic microtubules. J Cell Biol 119:171–178CrossRefPubMedGoogle Scholar
  8. Baird DH, Myers KA, Mogensen M, Moss D, Baas PW (2004) Distribution of the microtubule-related protein ninein in developing neurons. Neuropharmacology 47:677–683CrossRefPubMedGoogle Scholar
  9. Bell CD, Conen PE (1968) Histopathological changes in Duchenne muscular dystrophy. J Neurol Sci 7:529–544CrossRefPubMedGoogle Scholar
  10. Brodu V, Baffet AD, Le Droguen PM, Casanova J, Guichet A (2010) A developmentally regulated two-step process generates a noncentrosomal microtubule network in Drosophila tracheal cells. Dev Cell 18:790–801CrossRefPubMedGoogle Scholar
  11. Bruusgaard JC, Liestøl K, Gundersen K (2006) Distribution of myonuclei and microtubules in live muscle fibers of young, middle-aged, and old mice. J Appl Physiol 100:2024–2030CrossRefPubMedGoogle Scholar
  12. Bugnard E, Zaal KJ, Ralston E (2005) Reorganization of microtubule nucleation during muscle differentiation. Cell Motil Cytoskeleton 60:1–13CrossRefPubMedGoogle Scholar
  13. Burton PR (1988) Dendrites of mitral cell neurons contain microtubules of opposite polarity. Brain Res 473:107–115CrossRefPubMedGoogle Scholar
  14. Cadot B, Gache V, Vasyutina E, Falcone S, Birchmeier C, Gomes ER (2012) Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3. EMBO Rep 13:741–749CrossRefPubMedPubMedCentralGoogle Scholar
  15. Connolly JA, Kiosses BW, Kalnins VI (1986) Centrioles are lost as embryonic myoblasts fuse into myotubes in vitro. Eur J Cell Biol 39:341–345PubMedGoogle Scholar
  16. Dammermann A, Merdes A (2002) Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol 159:255–266CrossRefPubMedPubMedCentralGoogle Scholar
  17. de Anda FC, Pollarolo G, Da Silva JS, Camoletto PG, Feiguin F, Dotti CG (2005) Centrosome localization determines neuronal polarity. Nature 436:704–708CrossRefPubMedGoogle Scholar
  18. Elhanany-Tamir H, Yu YV, Shnayder M, Jain A, Welte M, Volk T (2012) Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules. J Cell Biol 198:833–846CrossRefPubMedPubMedCentralGoogle Scholar
  19. Englander LL, Rubin LL (1987) Acetylcholine receptor clustering and nuclear movement in muscle fibers in culture. J Cell Biol 104:87–95CrossRefPubMedGoogle Scholar
  20. Fant X, Srsen V, Espigat-Georger A, Merdes A (2009) Nuclei of non-muscle cells bind centrosome proteins upon fusion with differentiating myoblasts. PLoS One 4:e8303CrossRefPubMedPubMedCentralGoogle Scholar
  21. Folker ES, Schulman VK, Baylies MK (2012) Muscle length and myonuclear position are independently regulated by distinct Dynein pathways. Development 139:3827–3837CrossRefPubMedPubMedCentralGoogle Scholar
  22. Folker ES, Baylies MK (2013) Nuclear positioning in muscle development and disease. Front Physiol 4:363CrossRefPubMedPubMedCentralGoogle Scholar
  23. Folker ES, Schulman VK, Baylies MK (2014) Translocating myonuclei have distinct leading and lagging edges that require kinesin and dynein. Development 141:355–366CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fridolfsson HN, Ly N, Meyerzon M, Starr DA (2010) UNC-83 coordinates kinesin-1 and dynein activities at the nuclear envelope during nuclear migration. Dev Biol 338:237–250CrossRefPubMedPubMedCentralGoogle Scholar
  25. Guerin CM, Kramer SG (2009) RacGAP50C directs perinuclear gamma-tubulin localization to organize the uniform microtubule array required for Drosophila myotube extension. Development 136:1411–1421CrossRefPubMedPubMedCentralGoogle Scholar
  26. Heidemann SR, Landers JM, Hamborg MA (1981) Polarity orientation of axonal microtubules. J Cell Biol 91:661–665CrossRefPubMedGoogle Scholar
  27. Holtzer H, Croop J, Dienstman S, Ishikawa H, Somlyo A (1975) Effects of cytochalasin-B and colcemid on myogenic cultures. Proc Natl Acad Sci U S A 72:513–517CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ihrke G, Neufeld EB, Meads T, Shanks MR, Cassio D, Laurent M, Schroer TA, Pagano RE, Hubbard AL (1993) WIF-B cells: an in vitro model for studies of hepatocyte polarity. J Cell Biol 123:1761–1775CrossRefPubMedGoogle Scholar
  29. Kano Y, Fujimaki N, Ishikawa H (1991) The distribution and arrangement of microtubules in mammalian skeletal muscle fibers. Cell Struct Funct 16:251–261CrossRefPubMedGoogle Scholar
  30. Klarsfeld A, Bessereau JL, Salmon AM, Triller A, Babinet C, Changeux JP (1991) An acetylcholine receptor alpha-subunit promoter conferring preferential synaptic expression in muscle of transgenic mice. EMBO J 10:625–632PubMedPubMedCentralGoogle Scholar
  31. Leask A, Obrietan K, Stearns T (1997) Synaptically coupled central nervous system neurons lack centrosomal gamma-tubulin. Neurosci Lett 229:17–20CrossRefPubMedGoogle Scholar
  32. Lechler T, Fuchs E (2007) Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. J Cell Biol 176:147–154CrossRefPubMedPubMedCentralGoogle Scholar
  33. Malone CJ, Misner L, Le Bot N, Tsai MC, Campbell JM, Ahringer J, White JG (2003) The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115:825–836CrossRefPubMedGoogle Scholar
  34. Meads T, Schroer TA (1995) Polarity and nucleation of microtubules in polarized epithelial cells. Cell Motil Cytoskeleton 32:273–288CrossRefPubMedGoogle Scholar
  35. Metzger T, Gache V, Xu M, Cadot B, Folker ES, Richardson BE, Gomes ER, Baylies MK (2012) MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 484:120–124CrossRefPubMedPubMedCentralGoogle Scholar
  36. Meyerzon M, Fridolfsson HN, Ly N, McNally FJ, Starr DA (2009) UNC-83 is a nuclear-specific cargo adaptor for kinesin-1-mediated nuclear migration. Development 136:2725–2733CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mogensen MM (1999) Microtubule release and capture in epithelial cells. Biol Cell 91:331–341CrossRefPubMedGoogle Scholar
  38. Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M (2000) Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J Cell Sci 113:3013–3023PubMedGoogle Scholar
  39. Mogensen MM, Tucker JB, Baggaley TB (1993) Multiple plasma membrane-associated MTOC systems in the acentrosomal cone cells of Drosophila ommatidia. Eur J Cell Biol 60:67–75PubMedGoogle Scholar
  40. Mogensen MM, Tucker JB, Stebbings H (1989) Microtubule polarities indicate that nucleation and capture of microtubules occurs at cell surfaces in Drosophila. J Cell Biol 108:1445–1452CrossRefPubMedGoogle Scholar
  41. Musa H, Orton C, Morrison EE, Peckham M (2003) Microtubule assembly in cultured myoblasts and myotubes following nocodazole induced microtubule depolymerisation. J Muscle Res Cell Motil 24:301–308CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nekrasova OE, Amargo EV, Smith WO, Chen J, Kreitzer GE, Green KJ (2011) Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. J Cell Biol 195:1185–1203CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nguyen MM, Stone MC, Rolls MM (2011) Microtubules are organized independently of the centrosome in Drosophila neurons. Neural Dev 6:38CrossRefPubMedPubMedCentralGoogle Scholar
  44. Oddoux S, Zaal KJ, Tate V, Kenea A, Nandkeolyar SA, Reid E, Liu W, Ralston E (2013) Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. J Cell Biol 203:205–213CrossRefPubMedPubMedCentralGoogle Scholar
  45. Padmakumar VC, Abraham S, Braune S, Noegel AA, Tunggal B, Karakesisoglou I, Korenbaum E (2004) Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton. Exp Cell Res 295:330–339CrossRefPubMedGoogle Scholar
  46. Percival JM, Gregorevic P, Odom GL, Banks GB, Chamberlain JS, Froehner SC (2007) rAAV6-microdystrophin rescues aberrant Golgi complex organization in mdx skeletal muscles. Traffic 8:1424–1439CrossRefPubMedGoogle Scholar
  47. Pizon V, Gerbal F, Diaz CC, Karsenti E (2005) Microtubule-dependent transport and organization of sarcomeric myosin during skeletal muscle differentiation. EMBO J 24:3781–3792CrossRefPubMedPubMedCentralGoogle Scholar
  48. Prins KW, Humston JL, Mehta A, Tate V, Ralston E, Ervasti JM (2009) Dystrophin is a microtubule-associated protein. J Cell Biol 186:363–369CrossRefPubMedPubMedCentralGoogle Scholar
  49. Puckelwartz MJ, Kessler E, Zhang Y, Hodzic D, Randles KN, Morris G, Earley JU, Hadhazy M, Holaska JM, Mewborn SK, Pytel P, McNally EM (2009) Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum Mol Genet 18:607–620CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ralston E, Lu Z, Ploug T (1999) The organization of the Golgi complex and microtubules in skeletal muscle is fiber type-dependent. J Neurosci 19:10694–10705PubMedGoogle Scholar
  51. Ralston E, Ploug T, Kalhovde J, Lomo T (2001) Golgi complex, endoplasmic reticulum exit sites, and microtubules in skeletal muscle fibers are organized by patterned activity. J Neurosci 21:875–883PubMedGoogle Scholar
  52. Reilein A, Yamada S, Nelson WJ (2005) Self-organization of an acentrosomal microtubule network at the basal cortex of polarized epithelial cells. J Cell Biol 171:845–855CrossRefPubMedPubMedCentralGoogle Scholar
  53. Roux KJ, Crisp ML, Liu Q, Kim D, Kozlov S, Stewart CL, Burke B (2009) Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc Natl Acad Sci U S A 106:2194–2199CrossRefPubMedPubMedCentralGoogle Scholar
  54. Saitoh O, Arai T, Obinata T (1988) Distribution of microtubules and other cytoskeletal filaments during myotube elongation as revealed by fluorescence microscopy. Cell Tissue Res 252:263–273CrossRefPubMedGoogle Scholar
  55. Sanes JR, Johnson YR, Kotzbauer PT, Mudd J, Hanley T, Martinou JC, Merlie JP (1991) Selective expression of an acetylcholine receptor-lacZ transgene in synaptic nuclei of adult muscle fibers. Development 113:1181–1191PubMedGoogle Scholar
  56. Shahbazi MN, Megias D, Epifano C, Akhmanova A, Gundersen GG, Fuchs E, Perez-Moreno M (2013) CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions. J Cell Biol 203:1043–1061CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sharp GA, Weber K, Osborn M (1982) Centriole number and process formation in established neuroblastoma cells and primary dorsal root ganglion neurones. Eur J Cell Biol 29:97–103PubMedGoogle Scholar
  58. Srsen V, Fant X, Heald R, Rabouille C, Merdes A (2009) Centrosome proteins form an insoluble perinuclear matrix during muscle cell differentiation. BMC Cell Biol 10:28CrossRefPubMedPubMedCentralGoogle Scholar
  59. Starr DA, Han M (2002) Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 298:406–409CrossRefPubMedGoogle Scholar
  60. Straube A, Merdes A (2007) EB3 regulates microtubule dynamics at the cell cortex and is required for myoblast elongation and fusion. Curr Biol 17:1318–1325CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sumigray KD, Chen H, Lechler T (2011) Lis1 is essential for cortical microtubule organization and desmosome stability in the epidermis. J Cell Biol 194:631–642CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sumigray KD, Foote HP, Lechler T (2012) Noncentrosomal microtubules and type II myosins potentiate epidermal cell adhesion and barrier formation. J Cell Biol 199:513–525CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tanaka N, Meng W, Nagae S, Takeichi M (2012) Nezha/CAMSAP3 and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules. Proc Natl Acad Sci U S A 109:20029–20034CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tassin AM, Maro B, Bornens M (1985) Fate of microtubule-organizing centers during myogenesis in vitro. J Cell Biol 100:35–46CrossRefPubMedGoogle Scholar
  65. Tucker JB, Mogensen MM, Henderson CG, Doxsey SJ, Wright M, Stearns T (1998) Nucleation and capture of large cell surface-associated microtubule arrays that are not located near centrosomes in certain cochlear epithelial cells. J Anat 192:119–130CrossRefPubMedPubMedCentralGoogle Scholar
  66. Tucker JB, Paton CC, Richardson GP, Mogensen MM, Russell IJ (1992) A cell surface-associated centrosomal layer of microtubule-organizing material in the inner pillar cell of the mouse cochlea. J Cell Sci 102:215–226PubMedGoogle Scholar
  67. Wang S, Wu D, Quintin S, Green RA, Cheerambathur DK, Ochoa SD, Desai A, Oegema K (2015) NOCA-1 functions with gamma-tubulin and in parallel to patronin to assemble non-centrosomal microtubule arrays in C. elegans. Elife 4. doi: 10.7554/eLife.08649
  68. Wheeler MA, Davies JD, Zhang Q, Emerson LJ, Hunt J, Shanahan CM, Ellis JA (2007) Distinct functional domains in nesprin-1alpha and nesprin-2beta bind directly to emerin and both interactions are disrupted in X-linked Emery-Dreifuss muscular dystrophy. Exp Cell Res 313:2845–2857CrossRefPubMedGoogle Scholar
  69. Wilhelmsen K, Litjens SH, Kuikman I, Tshimbalanga N, Janssen H, van den Bout I, Raymond K, Sonnenberg A (2005) Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J Cell Biol 171:799–810CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wilson MH, Holzbaur EL (2012) Opposing microtubule motors drive robust nuclear dynamics in developing muscle cells. J Cell Sci 125:4158–4169CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wilson MH, Holzbaur EL (2015) Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells. Development 142:218–228CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wood JD, Landers JA, Bingley M, McDermott CJ, Thomas-McArthur V, Gleadall LJ, Shaw PJ, Cunliffe VT (2006) The microtubule-severing protein Spastin is essential for axon outgrowth in the zebrafish embryo. Hum Mol Genet 15:2763–2771CrossRefPubMedGoogle Scholar
  73. Yu J, Lei K, Zhou M, Craft CM, Xu G, Xu T, Zhuang Y, Xu R, Han M (2011) KASH protein Syne-2/Nesprin-2 and SUN proteins SUN1/2 mediate nuclear migration during mammalian retinal development. Hum Mol Genet 20:1061–1073CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhang J, Felder A, Liu Y, Guo LT, Lange S, Dalton ND, Gu Y, Peterson KL, Mizisin AP, Shelton GD, Lieber RL, Chen J (2010) Nesprin 1 is critical for nuclear positioning and anchorage. Hum Mol Genet 19:329–341CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhang Q, Bethmann C, Worth NF, Davies JD, Wasner C, Feuer A, Ragnauth CD, Yi Q, Mellad JA, Warren DT, Wheeler MA, Ellis JA, Skepper JN, Vorgerd M, Schlotter-Weigel B, Weissberg PL, Roberts RG, Wehnert M, Shanahan CM (2007a) Nesprin-1 and −2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16:2816–2833CrossRefPubMedGoogle Scholar
  76. Zhang T, Zaal KJ, Sheridan J, Mehta A, Gundersen GG, Ralston E (2009a) Microtubule plus-end binding protein EB1 is necessary for muscle cell differentiation, elongation and fusion. J Cell Sci 122:1401–1409CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M (2009b) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zhang X, Xu R, Zhu B, Yang X, Ding X, Duan S, Xu T, Zhuang Y, Han M (2007b) Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134:901–908CrossRefPubMedGoogle Scholar
  79. Zhen YY, Libotte T, Munck M, Noegel AA, Korenbaum E (2002) NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J Cell Sci 115:3207–3222PubMedGoogle Scholar
  80. Zhou K, Rolls MM, Hall DH, Malone CJ, Hanna-Rose W (2009) A ZYG-12-dynein interaction at the nuclear envelope defines cytoskeletal architecture in the C. elegans gonad. J Cell Biol 186:229–241CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Vyacheslav Dyachuk
    • 1
    • 2
  • Christiane Bierkamp
    • 1
  • Andreas Merdes
    • 1
  1. 1.Centre de Biologie du DéveloppementUniversité Toulouse IIIToulouseFrance
  2. 2.Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden

Personalised recommendations