Role of Symbionts in Evolutionary Processes

  • Thomas C. G. Bosch
  • David J. Miller


This chapter will look at the different ways in which animals use their microbial symbionts to adapt to the conditions in the environment that they live in. The newfound awareness of a world of complex interactions between developing organisms and the biotic and abiotic components of their environment and of the dependency of phenotypes on other species and environmental conditions presents additional layers of complexity for evolutionary theory and raises many questions that are being addressed by new research programs.


Bacterial Community Reproductive Isolation Symbiotic Bacterium Rapid Adaptation Zebra Fish 


  1. Alegado RA, King N (2014) Bacterial influences on animal origins. Cold Spring Harb Perspect Biol 6(11):a016162CrossRefPubMedGoogle Scholar
  2. Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13(8), e1002226CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brucker RM, Bordenstein SR (2012) Speciation by symbiosis. Trends Ecol Evol 27:443–451CrossRefPubMedGoogle Scholar
  4. Brucker RM, Bordenstein SR (2013a) The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341:667–669CrossRefPubMedGoogle Scholar
  5. Brucker RM, Bordenstein SR (2013b) The capacious hologenome. Zoology (Jena) 116(5):260–261CrossRefGoogle Scholar
  6. Brucker RM, Bordenstein SR (2014) Response to Comment on “The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia”. Science 345:1011CrossRefPubMedGoogle Scholar
  7. Cho CE, Norman M (2013) Cesarean section and development of the immune system in the offspring. Am J Obstet Gynecol 208(4):249–254CrossRefPubMedGoogle Scholar
  8. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF (2013) The microbiome-gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673CrossRefPubMedGoogle Scholar
  9. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG (2014) Minireview: Gut microbiota: the neglected endocrine organ. Mol Endocrinol 28(8):1221–1238CrossRefPubMedGoogle Scholar
  10. Gilbert SF, Bosch TCG, Ledón-Rettig C (2015) Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet 16(10):611–622CrossRefPubMedGoogle Scholar
  11. McFall-Ngai MJ (2002) Unseen forces: the influence of bacteria on animal development. Dev Biol 242:1–14CrossRefPubMedGoogle Scholar
  12. McFall-Ngai MJ (2014) The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu Rev Microbiol 68:177–194CrossRefPubMedGoogle Scholar
  13. McFall-Ngai MJ (2015) Giving microbes their due–animal life in a microbially dominant world. J Exp Biol 218(Pt 12):1968–1973CrossRefPubMedGoogle Scholar
  14. McFall-Ngai MJ, Ruby EG (1991) Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254(5037):1491–1494CrossRefPubMedGoogle Scholar
  15. McFall-Ngai MJ, Ruby EG (2012) Deciphering the language of diplomacy: give and take in the study of the squid-vibrio symbiosis. In, Microbes and Evolution: the World that Darwin Never Saw, eds. S Maloy, R Kolter, ASM Press. pp 173-180.Google Scholar
  16. Moran NA, Yun Y (2015) Experimental replacement of an obligate insect symbiont. Proc Natl Acad Sci U S A 112:2093–2096CrossRefPubMedPubMedCentralGoogle Scholar
  17. Mortzfeld B, Urbanski S, Reitzel AM, Künzel S, Technau U, Fraune S (2015) Response of bacterial colonization in Nematostella vectensis to development, environment and biogeography. Environ Microbiol. doi: 10.1111/1462-2920.12926
  18. Reshef L, Koren O, Loya Y, Zilber-Rosenburg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8(12):2068–2073CrossRefPubMedGoogle Scholar
  19. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362CrossRefPubMedGoogle Scholar
  20. Rosenberg E, Sharon G, Zilber-Rosenburg I (2009) Opinion: the hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environ Microbiol 11(12):2959–2962CrossRefPubMedGoogle Scholar
  21. Stefanik DJ, Friedman L, Finnerty JF (2013) Collecting, rearing, spawning and inducing regeneration of the starlet sea anemone, Nematostella vectensis. Nat Protoc 8:916–923CrossRefPubMedGoogle Scholar
  22. Weismann to Haeckel, 27 January 1874, in Georg Uschmann anfd Bernhard Hassenstein, “Der Briefwechsel zwischen Ernst Haeckel und August Weismann”, in Kleine Festrede aus Anlass der hundertjährigen Wiederklehr der gründung des Zoologischen Institues der Friedrich-Schiller-Universität Jena im Jahre 1865, ed. M. Gersch (Jena: Friedrich-Schiller-Universität, 1965), pp 35–36Google Scholar
  23. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Thomas C. G. Bosch
    • 1
  • David J. Miller
    • 2
  1. 1.Zoological InstituteChristian Albrechts Universitätzu KielKielGermany
  2. 2.ARC Cnt. of Execl. for Coral Reef Stud.James Cook UniversityTownsvilleAustralia

Personalised recommendations