Phylosymbiosis: Novel Genomic Approaches Discover the Holobiont

  • Thomas C. G. Bosch
  • David J. Miller


Important questions in biology are usually raised long time ago. Answering them, however, has to await the development of appropriate techniques. Due to the emergence and rapid technological advances in culture-independent techniques to identify and characterize microbes, particularly genomic approaches, we learned that organisms from Hydra to man are to be considered holobionts stably associated with bacteria, mainly strict anaerobes, but also including viruses, archaea, fungi, and protists.


Bacterial Community Common Garden Experiment Crown Group Hydra Species Brine Shrimp Nauplius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Brucker RM, Bordenstein SR (2012a) Speciation by symbiosis. Trends Ecol Evol 27(8):443–451CrossRefPubMedGoogle Scholar
  2. Brucker RM, Bordenstein SR (2012b) The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities. Evolution 66(2):349–362CrossRefPubMedGoogle Scholar
  3. Brucker RM, Bordenstein SR (2013a) The capacious hologenome. Zoology 116(5):260–261CrossRefPubMedGoogle Scholar
  4. Brucker RM, Bordenstein SR (2013b) The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341(6146):667–669CrossRefPubMedGoogle Scholar
  5. Cartwright P, Collins A (2007) Fossils and phylogenies: integrating multiple lines of evidence to investigate the origin of early major metazoan lineages. Integr Comp Biol 47:744–751CrossRefPubMedGoogle Scholar
  6. Chen J-Y, Oliveri P, Gao F, Dornbos SQ, Li C-W, Bottjer DJ, Davidson EH (2002) Precambrian animal life: Probable developmental and adult cnidarian forms from southwest China. Dev Biol 248:182–196CrossRefPubMedGoogle Scholar
  7. Fraune S, Bosch TCG (2007) Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci U S A 104:13146–13151CrossRefPubMedPubMedCentralGoogle Scholar
  8. Franzenburg S, Fraune S, Altrock PM, Künzel S, Baines JF, Traulsen A, Bosch TCG (2013) Bacterial colonization of Hydra hatchlings follows a robust temporal pattern. ISME J 7(4):781–90Google Scholar
  9. Futuyma DJ (1979) Evolutionary biology, 1st edn. Sinauer Associates, Sunderland. ISBN 0-87893-199-6Google Scholar
  10. Futuyma DJ (2005) Evolution. Sinauer Associates, Sunderland. ISBN 0-87893-187-2Google Scholar
  11. Futuyma DJ, Slatkin M (eds) (1983) Coevolution. Sinauer Associates, Sunderland. ISBN 0-87893-228-3Google Scholar
  12. Kawaida H, Ohba K, Koutake Y, Shimizu H, Tachida H, Kobayakawa Y (2013) Symbiosis between Hydra and Chlorella: molecular phylogenetic analysis and experimental study provide insight into its origin and evolution. Mol Phylogenet Evol 66:906–914CrossRefPubMedGoogle Scholar
  13. Khalturin K, Anton-Erxleben F, Sassmann S, Wittlieb J, Hemmrich G, Bosch TCG (2008) A novel gene family controls species-specific morphological traits in Hydra. PLoS Biol 6:e278CrossRefPubMedPubMedCentralGoogle Scholar
  14. Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TCG (2009) More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet 25:404–413CrossRefPubMedGoogle Scholar
  15. Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP, Bradley AS, Kelly AE, Bhatia M, Meredith W, Snape CE, Bowring SA, Condon DJ, Summons RE (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457:718–721CrossRefPubMedGoogle Scholar
  16. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230CrossRefPubMedPubMedCentralGoogle Scholar
  17. Martínez DE, Iñiguez AR, Percell KM, Willner JB, Signorovitch J, Campbell RD (2010) Phylogeny and biogeography of Hydra (Cnidaria: Hydridae) using mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 57:403–410CrossRefPubMedGoogle Scholar
  18. McFall-Ngai M, Hadfield M, Bosch T, Carey H, Domazet-Loso T, Douglas A, Dubilier N, Eberl G, Fukami T, Gilbert S, Hentschel U, King N, Kjelleberg S, Knoll A, Kremer N, Mazmanian S, Metcalf J, Nealson K, Pierce N, Rawls J, Reid A, Ruby E, Rumpho M, Sanders J, Tautz D, Wernegreen J (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110(9):3229–3236CrossRefPubMedPubMedCentralGoogle Scholar
  19. Morgan XC, Segata N, Huttenhower C (2013) Biodiversity and functional genomics in the human microbiome. Trends Genet 29(1):51–58CrossRefPubMedPubMedCentralGoogle Scholar
  20. Nawrocki AM, Collins AG, Hirano YM, Schuchert P, Cartwright P (2013) Phylogenetic placement of Hydra and relationships within Aplanulata (Cnidaria: Hydrozoa). Mol Phylogenet Evol 67:60–71CrossRefPubMedGoogle Scholar
  21. Rawls JF, Mahowald MA, Ley RE, Gordon JI (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127(2):423–433CrossRefPubMedGoogle Scholar
  22. Schwentner M, Bosch TCG (2015) Revisiting the age, evolutionary history and species level diversity of the genus Hydra (Cnidaria: Hydrozoa). Mol Phylogenet Evol 91:41–55CrossRefPubMedGoogle Scholar
  23. The Human Micorbiome Project Consortium (2012a) A framework for human microbiome research. Nature 486:215–221CrossRefGoogle Scholar
  24. The Human Micorbiome Project Consortium (2012b) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214CrossRefGoogle Scholar
  25. Upchurch P (2008) Gondwanan break-up: legacies of a lost world? Trends Ecol Evol 23:229–236CrossRefPubMedGoogle Scholar
  26. Waggoner B, Collins AG (2004) Reducto ad absurdum: testing the evolutionary relationships of ediacaran and paleaozoic problematic fossils using molecular divergence dates. J Paleont 78:51–61CrossRefGoogle Scholar
  27. Weinstock GM (2012) Genomic approaches to studying the human microbiota. Nature 489:250–256CrossRefPubMedPubMedCentralGoogle Scholar
  28. Xiao S, Yuan X, Knoll AH (2000) Eumetazoan fossils in terminal Proterozoic phosphorites? Proc Natl Acad Sci U S A 97:13684–13689CrossRefPubMedPubMedCentralGoogle Scholar
  29. Young GA, Hagadorn JW (2010) The fossil record of cnidarian medusae. Palaeoworld 19:212–221CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Thomas C. G. Bosch
    • 1
  • David J. Miller
    • 2
  1. 1.Zoological InstituteChristian Albrechts Universitätzu KielKielGermany
  2. 2.ARC Cnt. of Execl. for Coral Reef Stud.James Cook UniversityTownsvilleAustralia

Personalised recommendations