The Diversity of Animal Life: Introduction to Early Emerging Metazoans

  • Thomas C. G. Bosch
  • David J. Miller


Extant animals are classified into about 26 phyla, each of which capture variations in a basic body plan (Bauplan) that, with only one exception, dates back to the Cambrian. On the basis of molecular criteria, most of these are grouped into three “superphyla” (Fig. 3.1)—Ecdysozoa (the “moulting” animals, within which the arthropods and nematodes are the major component phyla), Lophotrochozoa (crest or wheel animals; mollusks, annelids, and platyhelminths are the major groups), and Deuterostomia (echinoderms, hemichordates, urochordates, and chordates). The overwhelming majority of extant animals have two obvious body axes—anterior/posterior and dorsal/ventral—and hence the phyla to which they belong are known as the Bilateria (or bilaterally symmetric animals), the “higher” animals. That the Bilateria have a single origin (i.e., are a monophyletic group) is most convincingly shown by the fact that the molecular mechanisms involved in patterning along these two axes are conserved even between such different kinds of animals as vertebrates and insects.


Calcareous Sponge Glass Sponge Extant Animal Medusa Stage Beroe Ovata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alegado RA et al (2012) A bacterial sulfolipid triggers multicellular development in the closest relatives of animals. eLife 1:e00013CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anctil M (2009) Chemical transmission in the sea anemone Nematostella vectensis: a genomic perspective. Comp Biochem Physiol Part D Genomics Proteomics 4:268–289CrossRefPubMedGoogle Scholar
  3. Ball E, Hayward D, Saint R et al (2004) A simple plan – cnidarians and the origins of developmental mechanisms. Nat Genet 5:567–577CrossRefGoogle Scholar
  4. Ball E, DeJong D, Schierwater B et al (2007) Implications of cnidarian gene expression patterns for the origins of bilaterality - is the glass half full or half empty? Integrative and Comparative Biology 47(5):701–711CrossRefPubMedGoogle Scholar
  5. Chapman JA et al (2010) The dynamic genome of Hydra. Nature 464:592–596CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA, McDonald K, King N (2011) Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev Biol 357(1):73–82.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Eitel M et al (2013) Global diversity of the Placozoa. PLoS One 8:e57131CrossRefPubMedPubMedCentralGoogle Scholar
  8. Jager M, Dayraud C, Mialot A, Quéinnec E, le Guyader H, et al (2013) Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro-sensory system in an adult ctenophore. PLoS ONE 8(12):e84363CrossRefPubMedPubMedCentralGoogle Scholar
  9. King N (2004) The unicellular ancestry of animal development. Dev Cell 7:313–325CrossRefPubMedGoogle Scholar
  10. King N (2005) Choanoflagellates. Curr Biol 15(4):R113–R114CrossRefPubMedGoogle Scholar
  11. Kortschak RD et al (2003) EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Current Biology 13: 2190–2195CrossRefPubMedGoogle Scholar
  12. Kozmik Z et al (2008) Assembly of the cnidarian camera-type eye from vertebrate-like components. Proc Natl Acad Sci U S A 105:8989–8993CrossRefPubMedPubMedCentralGoogle Scholar
  13. Miller DJ, Ball EE (2008) Cryptic complexity captured: the Nematostella genome reveals its secrets. Trends Genet 24:1–4CrossRefPubMedGoogle Scholar
  14. Moroz LL et al (2014) The ctenophore genome and the evolutionary origins of neural systems. Nature 510:109–114CrossRefPubMedPubMedCentralGoogle Scholar
  15. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, et al (2007). Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94CrossRefPubMedGoogle Scholar
  16. Richter DJ, King N (2013) The genomic and cellular foundations of animal origins. Ann Rev Genet 47:509–537CrossRefPubMedGoogle Scholar
  17. Shinzato C et al (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320–323CrossRefPubMedGoogle Scholar
  18. Siegl A et al (2011) Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J 5:61–70CrossRefPubMedPubMedCentralGoogle Scholar
  19. Smith CL et al (2014) Novel cell types, neurosecretory cells and body plan of the early-diverging metazoan Trichoplax adhaerens. Curr Biol 24:1565–1572CrossRefPubMedPubMedCentralGoogle Scholar
  20. Srivastava M et al (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960CrossRefPubMedGoogle Scholar
  21. Steinmetz PR et al (2012) Independent evolution of striated muscles in cnidarians and bilaterians. Nature 487:231–234CrossRefPubMedPubMedCentralGoogle Scholar
  22. Suga H et al (2013) The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun 4:2325Google Scholar
  23. Tang F, Bengtson S, Wang Y, Wang XL, Yin CY (2011) Eoandromeda and the origin of Ctenophora. Evol Dev 13(5):408–14CrossRefPubMedGoogle Scholar
  24. Technau U et al (2005) Maintenance of ancestral genetic complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21:633–639CrossRefPubMedGoogle Scholar
  25. Valentine JW, Jablonski D, Erwin DH (1999) Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126:851–859PubMedGoogle Scholar
  26. Williams GC (1994) Biotic diversity, biogeography and phylogeny of pennatulacean octocorals associated with coral reefs on the Indo-Pacific. Proc Seventh Int Coral Reef Symp 2:729–735Google Scholar
  27. Williams GC (2011) The global diversity of sea pens (Cnidaria: Octocorallia: Pennatulacea). PLoS One 6, e22747Google Scholar
  28. Xiao X, Laflamme M (2009) On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol Evol 24:31–40CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Thomas C. G. Bosch
    • 1
  • David J. Miller
    • 2
  1. 1.Zoological InstituteChristian Albrechts Universitätzu KielKielGermany
  2. 2.ARC Cnt. of Execl. for Coral Reef Stud.James Cook UniversityTownsvilleAustralia

Personalised recommendations