Skip to main content

The Diversity of Animal Life: Introduction to Early Emerging Metazoans

  • Chapter
  • First Online:
  • 960 Accesses

Abstract

Extant animals are classified into about 26 phyla, each of which capture variations in a basic body plan (Bauplan) that, with only one exception, dates back to the Cambrian. On the basis of molecular criteria, most of these are grouped into three “superphyla” (Fig. 3.1)—Ecdysozoa (the “moulting” animals, within which the arthropods and nematodes are the major component phyla), Lophotrochozoa (crest or wheel animals; mollusks, annelids, and platyhelminths are the major groups), and Deuterostomia (echinoderms, hemichordates, urochordates, and chordates). The overwhelming majority of extant animals have two obvious body axes—anterior/posterior and dorsal/ventral—and hence the phyla to which they belong are known as the Bilateria (or bilaterally symmetric animals), the “higher” animals. That the Bilateria have a single origin (i.e., are a monophyletic group) is most convincingly shown by the fact that the molecular mechanisms involved in patterning along these two axes are conserved even between such different kinds of animals as vertebrates and insects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alegado RA et al (2012) A bacterial sulfolipid triggers multicellular development in the closest relatives of animals. eLife 1:e00013

    Article  PubMed  PubMed Central  Google Scholar 

  • Anctil M (2009) Chemical transmission in the sea anemone Nematostella vectensis: a genomic perspective. Comp Biochem Physiol Part D Genomics Proteomics 4:268–289

    Article  PubMed  Google Scholar 

  • Ball E, Hayward D, Saint R et al (2004) A simple plan – cnidarians and the origins of developmental mechanisms. Nat Genet 5:567–577

    Article  CAS  Google Scholar 

  • Ball E, DeJong D, Schierwater B et al (2007) Implications of cnidarian gene expression patterns for the origins of bilaterality - is the glass half full or half empty? Integrative and Comparative Biology 47(5):701–711

    Article  PubMed  Google Scholar 

  • Chapman JA et al (2010) The dynamic genome of Hydra. Nature 464:592–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA, McDonald K, King N (2011) Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev Biol 357(1):73–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eitel M et al (2013) Global diversity of the Placozoa. PLoS One 8:e57131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jager M, Dayraud C, Mialot A, Quéinnec E, le Guyader H, et al (2013) Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro-sensory system in an adult ctenophore. PLoS ONE 8(12):e84363

    Article  PubMed  PubMed Central  Google Scholar 

  • King N (2004) The unicellular ancestry of animal development. Dev Cell 7:313–325

    Article  CAS  PubMed  Google Scholar 

  • King N (2005) Choanoflagellates. Curr Biol 15(4):R113–R114

    Article  CAS  PubMed  Google Scholar 

  • Kortschak RD et al (2003) EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Current Biology 13: 2190–2195

    Article  CAS  PubMed  Google Scholar 

  • Kozmik Z et al (2008) Assembly of the cnidarian camera-type eye from vertebrate-like components. Proc Natl Acad Sci U S A 105:8989–8993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller DJ, Ball EE (2008) Cryptic complexity captured: the Nematostella genome reveals its secrets. Trends Genet 24:1–4

    Article  CAS  PubMed  Google Scholar 

  • Moroz LL et al (2014) The ctenophore genome and the evolutionary origins of neural systems. Nature 510:109–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, et al (2007). Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    Article  CAS  PubMed  Google Scholar 

  • Richter DJ, King N (2013) The genomic and cellular foundations of animal origins. Ann Rev Genet 47:509–537

    Article  PubMed  Google Scholar 

  • Shinzato C et al (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320–323

    Article  CAS  PubMed  Google Scholar 

  • Siegl A et al (2011) Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J 5:61–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith CL et al (2014) Novel cell types, neurosecretory cells and body plan of the early-diverging metazoan Trichoplax adhaerens. Curr Biol 24:1565–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava M et al (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960

    Article  CAS  PubMed  Google Scholar 

  • Steinmetz PR et al (2012) Independent evolution of striated muscles in cnidarians and bilaterians. Nature 487:231–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suga H et al (2013) The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun 4:2325

    Google Scholar 

  • Tang F, Bengtson S, Wang Y, Wang XL, Yin CY (2011) Eoandromeda and the origin of Ctenophora. Evol Dev 13(5):408–14

    Article  PubMed  Google Scholar 

  • Technau U et al (2005) Maintenance of ancestral genetic complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21:633–639

    Article  CAS  PubMed  Google Scholar 

  • Valentine JW, Jablonski D, Erwin DH (1999) Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126:851–859

    CAS  PubMed  Google Scholar 

  • Williams GC (1994) Biotic diversity, biogeography and phylogeny of pennatulacean octocorals associated with coral reefs on the Indo-Pacific. Proc Seventh Int Coral Reef Symp 2:729–735

    Google Scholar 

  • Williams GC (2011) The global diversity of sea pens (Cnidaria: Octocorallia: Pennatulacea). PLoS One 6, e22747

    Google Scholar 

  • Xiao X, Laflamme M (2009) On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol Evol 24:31–40

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Bosch, T.C.G., Miller, D.J. (2016). The Diversity of Animal Life: Introduction to Early Emerging Metazoans. In: The Holobiont Imperative. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1896-2_3

Download citation

Publish with us

Policies and ethics