Advertisement

Major Events in the Evolution of Planet Earth: Some Origin Stories

  • Thomas C. G. Bosch
  • David J. Miller
Chapter

Abstract

With billions of years of evolution before the appearance of animals, prokaryotes shaped and continue to shape both the Earth’s biogeochemical landscape and the setting for animal existence (Fig. 2.1) (Knoll 2003).

Keywords

Symbiodinium Cell Amphimedon Queenslandica Volvocine Alga Molecular Phylogenetic Approach Metazoan Ancestor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adamska M, Larroux C, Adamski M, Green K, Lovas E, Koop D, Richards GS, Zwafink C, Degnan BM (2010) Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica. Evol Dev 12(5):494–518CrossRefPubMedGoogle Scholar
  2. Adamska M, Degnan BM, Green K, Zwafink C (2011) What sponges can tell us about the evolution of developmental processes. Zoology (Jena) 114(1):1–10, ReviewCrossRefGoogle Scholar
  3. Alegado RA, King N (2014) Bacterial influences on animal origins. Cold Spring Harb Perspect Biol 6:a016162CrossRefPubMedGoogle Scholar
  4. Alegado RA, Brown LW, Cao S, Dermenjian RK, Zuzow R, Fairclough SR, Clardy J, King N (2012) A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. ELife 1:e00013CrossRefPubMedPubMedCentralGoogle Scholar
  5. Artamonova II, Mushegiand AR (2013) Genome sequence analysis indicates that the model eukaryote nematostella vectensis harbors bacterial consorts. Appl Environ Microbiol 79(22):6868–6873CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712CrossRefPubMedGoogle Scholar
  7. Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law L, Lindgens D, Martinez DE, Peng J, Wigge PA, Bertulat B, Guder C, Nakamura Y, Ozbek S, Watanabe H, Khalturin K, Hemmrich G, Franke A, Augustin R, Fraune S, Hayakawa E, Hayakawa S, Hirose M, Hwang JS, Ikeo K, Nishimiya-Fujisawa C, Ogura A, Takahashi T, Steinmetz PR, Zhang X, Aufschnaiter R, Eder MK, Gorny AK, Salvenmoser W, Heimberg AM, Wheeler BM, Peterson KJ, Bottger A, Tischler P, Wolf A, Gojobori T, Remington KA, Strausberg RL, Venter JC, Technau U, Hobmayer B, Bosch TC, Holstein TW, Fujisawa T, Bode HR, David CN, Rokhsar DS, Steele RE (2010) The dynamic genome of Hydra. Nature 464(7288):592–596CrossRefPubMedPubMedCentralGoogle Scholar
  8. Doolittle WF, Fraser P, Gerstein MB, Graveley BR, Henikoff S, Huttenhower C, Oshlack A, Ponting CP, Rinn JL, Schatz MC, Ule J, Weigel D, Weinstock GM (2013) Sixty years of genome biology. Genome Biol 14(4):113CrossRefPubMedPubMedCentralGoogle Scholar
  9. Doolittle WF, Zhaxybayeva O (2009) On the origin of prokaryotic species. Genome Res 19(5):744–756CrossRefPubMedGoogle Scholar
  10. Fortunato SAV, Adamski M, Mendivil Ramos O, Leininger S, Liu J, Ferrier DEK, Adamska M (2014) Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes. Nature 514:620–623CrossRefPubMedGoogle Scholar
  11. Fukami T, Wardle DA, Bellingham PJ, Mulder CP, Towns DR, Yeates GW, Bonner KI, Durrett MS, Grant-Hoffman MN, Williamson WM (2006) Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol Lett 9:1299–1307CrossRefPubMedGoogle Scholar
  12. Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinf 23(8):172CrossRefGoogle Scholar
  13. Hadfield MG (2011) Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Ann Rev Mar Sci 3:453–470CrossRefPubMedGoogle Scholar
  14. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170CrossRefPubMedGoogle Scholar
  15. Keeling PJ, McCutcheon JP, Doolittle WF (2015) Symbiosis becoming permanent: survival of the luckiest. Proc Natl Acad Sci U S A 112(33):10101–10103CrossRefPubMedPubMedCentralGoogle Scholar
  16. King N (2010) Nature and nurture in the evolution of cell biology. Mol Biol Cell 21:3801–3802CrossRefPubMedPubMedCentralGoogle Scholar
  17. Knoll AH (2003) Life on a young planet. Princeton University Press, PrincetonGoogle Scholar
  18. Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477CrossRefPubMedGoogle Scholar
  19. Margulis L, Dorion S (2001) Marvellous microbes. Resurgence 206:10–12Google Scholar
  20. McFall-Ngai M, Hadfield M, Bosch T, Carey H, Domazet-Loso T, Douglas A, Dubilier N, Eberl G, Fukami T, Gilbert S, Hentschel U, King N, Kjelleberg S, Knoll A, Kremer N, Mazmanian S, Metcalf J, Nealson K, Pierce N, Rawls J, Reid A, Ruby E, Rumpho M, Sanders J, Tautz D, Wernegreen J (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110(9):3229–3236CrossRefPubMedPubMedCentralGoogle Scholar
  21. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M et al (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320–323CrossRefPubMedGoogle Scholar
  22. Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, Takeuchi T, Hisata K, Tanaka M, Fujiwara M, Hamada M, Seidi A, Fujie M, Usami T, Goto H, Yamasaki S, Arakaki N, Suzuki Y, Sugano S, Toyoda A, Kuroki Y, Fujiyama A, Medina M, Coffroth MA, Bhattacharya D, Sato N (2013) Draft assembly of the symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol 23:1399–1408CrossRefPubMedGoogle Scholar
  23. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, Manning G, Degnan BM, Rokhsar DS (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466(7307):720–726CrossRefPubMedPubMedCentralGoogle Scholar
  24. Taylor LH, Latham SM, Woolhouse ME (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356(1411):983–989CrossRefPubMedPubMedCentralGoogle Scholar
  25. Williams GP, Babu S, Ravikumar S, Kathiresan K, Prathap SA, Chinnapparaj S, Marian MP, Alikhan SL (2007) Antimicrobial activity of tissue and associated bacteria from benthic sea anemone Stichodactyla haddoni against microbial pathogens. J Environ Biol 28:789–793PubMedGoogle Scholar
  26. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74(11):5088–5090CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Thomas C. G. Bosch
    • 1
  • David J. Miller
    • 2
  1. 1.Zoological InstituteChristian Albrechts Universitätzu KielKielGermany
  2. 2.ARC Cnt. of Execl. for Coral Reef Stud.James Cook UniversityTownsvilleAustralia

Personalised recommendations